M-Rock

Human-Machine Interaction Modeling for Continuous Improvement of Robot Behavior

Embedding implicit and explicit feedback into the Q-Rock Development Cycle (Photo: Thomas Röhr, DFKI GmbH)
Embedding implicit and explicit feedback into the Q-Rock Development Cycle (Photo: Thomas Röhr, DFKI GmbH)

M-Rock is part of the X-Rock developments, which shall enable users to design personal assistants without any expert knowledge, and help domain experts to identify opportunities to improve a system. M-Rock builds on the results of D-Rock and Q-Rock: Modularization and modeling solutions developed in D-Rock enable efficient reuse of components and describe how of components and describe how components can be used in a given context. Q-Rock automatically maps the structural hardware and software complexity of current robotic systems to behaviors. The main goal of M-Rock is to enable the use of user feedback to not only improve behaviors on the software side with respect to the individual requirements of the user, as in the as shown in the Q-Rock outlook, but also to realize a subsequent optimization of the Q-Rock software flow with respect to the hardware selection. M-Rock thus enables an automatic adaptation of a robot to the individual requirements and preferences of the interacting human. For this purpose explicit feedback (e.g. rating scale for performance evaluation) is combined with implicit feedback. As a source of implicit human feedback, M-Rock makes use of the EEGs of the users. Using two different rating scenarios, we evaluate the developments in M-Rock to validate that they can be used by both laymen and domain experts.

Duration: 01.08.2021 till 31.07.2024
Donee: German Research Center for Artificial Intelligence GmbH
Sponsor: Federal Ministry of Education and Research
Grant number: Funded by the Federal Ministry of Education and Research with grant no01IW21002.
Application Field: Assistance- and Rehabilitation Systems
Logistics, Production and Consumer
SAR- & Security Robotics
Underwater Robotics
Space Robotics
Related Projects: D-Rock
Models, methods and tools for the model based software development of robots (06.2015- 05.2018)
Q-Rock
AI-based Qualification of Deliberative Behaviour for a Robotic Construction Kit (08.2018- 07.2021)
Recupera REHA
Full-body exoskeleton for upper body robotic assistance (09.2014- 12.2017)
Related Robots: Dual Arm Exoskeleton
Exoskeleton for upper body robotic assistance (Recupera REHA)
Related Software: HyRoDyn
Hybrid Robot Dynamics
Rock
Robot Construction Kit
BOLeRo
Behavior Optimization and Learning for Robots
Phobos
An add-on for Blender allowing editing and exporting of robots for the MARS simulation
MARS
Machina Arte Robotum Simulans
pySPACE
Signal Processing and Classification Environment written in Python

Project details

Graphical User Interface for rating of robot behaviors (Photo: Thomas Röhr, DFKI GmbH)

The current developments in digitalization, AI-based data processing, and powerful hardware lay the groundwork for future embodied AI assistants. These intelligent robots must be versatile, adaptive and flexible with respect to changes in the environment or requirements to become optimized for their purpose for assistance in every day life and work.

Furthermore, they must be tailored to the needs of the user in order to achieve a high level of acceptance and to fulfill the desire for individuality. The user wants to decide how a system should look and behave. This is not only true for everyday personal assistance but also for collaboration between robots and humans in production, logistics or care. In addition, individually tailored robots should be easily designed by the user and, if possible, automatically adapted during use to changing needs or observed new requirements.

The X-Rock series addresses precisely these aspects. X-Rock enables users to design their own personal assistant without the need for any expert knowledge but will also help domain experts in identifying possibilities for improvement of a system. Modularization and Modeling developed in D-Rock enables efficient reuse of components and describes how components can be used in a given context. Q-Rock automatically maps the structural hardware and software complexity of current robotic systems to behaviors. 

M-Rock will directly build on the results of D-Rock and Q-Rock. Its main goal is to enable the usage of explicit and implicit user feedback to not only optimize behavior on the software side with respect to the individual requirements of the user, as shown in Q-Rock ’s outlook, but also to enable subsequent optimization of the Q-Rock software flow including hardware selection. M-Rock will enable an automatic adaption of a robot to the individual requirements and preferences of the interacting human. To this end, we combine explicit feedback (i.e., rating scale for performance evaluation) with implicit feedback. As a source for implicit human feedback M-Rock will make use of the users’ EEGs.

With the help of two different evaluation scenarios we will show how the developments in M-Rock can be used to optimize software and hardware of a robot by enabling the usage of explicit and implicit human feedback within the Q-Rock cycle and how it can be used by laymen as well as by domain experts alike.

Back to the list of projects
© DFKI GmbH
last updated 24.09.2021
to top