Design, Analysis and Control of the Series-Parallel Hybrid RH5 Humanoid Robot
Julian Eßer, Shivesh Kumar, Heiner Peters, Vinzenz Bargsten, José de Gea Fernández, Carlos Mastalli, Olivier Stasse, Frank Kirchner
In 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), (Humanoids-2020), 19.7.-21.7.2021, Munich/Virtual, IEEE, pages 400-407, Jul/2021.

Abstract :

Last decades of humanoid research has shown that humanoids developed for high dynamic performance require a stiff structure and optimal distribution of mass– inertial properties. Humanoid robots built with a purely tree type architecture tend to be bulky and usually suffer from velocity and force/torque limitations. This paper presents a novel series-parallel hybrid humanoid called RH5 which is 2 m tall and weighs only 62.5 kg capable of performing heavy-duty dynamic tasks with 5 kg payloads in each hand. The analysis and control of this humanoid is performed with whole-body trajectory optimization technique based on differential dynamic programming (DDP). Additionally, we present an improved contact stability soft-constrained DDP algorithm which is able to generate physically consistent walking trajectories for the humanoid that can be tracked via a simple PD position control in a physics simulator. Finally, we showcase preliminary experimental results on the RH5 humanoid robot.



last updated 28.02.2023