Object Recognition and Localization: The Role of Tactile Sensors


Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. In this talk two approaches for haptic object recognition and localization for ground and underwater environments will be presented. The first approach called Batch Ransac and Iterative Closest Point augmented Sequential Filter (BRICPSF) is based on an innovative combination of a sequential filter, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in simulation and using actual hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses BRICPSF for object part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments.

In der Regel sind die Vorträge Teil von Lehrveranstaltungsreihen der Universität Bremen und nicht frei zugänglich. Bei Interesse wird um Rücksprache mit dem Sekretariat unter sek-ric(at)dfki.de gebeten.

zuletzt geändert am 31.03.2023