It is to research how prior information about a problem can be incorporated into a classifier. The application scenario for this are Brain Computer Interfaces. Before every use of a BCI, a classifier has to be trained with previously recorded training data. It has been shown that data or classifier form other subjects can be used to shorten or totally skip the training. In this thesis the prior information is incorporated into the Bayesian Linear Discriminant Analysis to obtain high performance and in session adaptation.
Vortragsdetails
Bayesian Approaches for adaptive Brain-Reading
In der Regel sind die Vorträge Teil von Lehrveranstaltungsreihen der Universität Bremen und nicht frei zugänglich. Bei Interesse wird um Rücksprache mit dem Sekretariat unter sek-ric(at)dfki.de gebeten.