
Diplom-Thesis

Implementation and Evaluation of a

Connectionist Learning Architecture in a

Simulated ”Brio Labyrinth Game”

Larbi Abdenebaoui

1662320

University of Bremen

Fachbereich 3

Informatik

Supervisor:

Prof. Dr. Frank Kirchner

June 25, 2007

1

Abstract

This thesis presents a connectionist architecture, which is able to learn how

to play the popular Swedish game ”Brio Labyrinth Game”. The aim of the

game is to manoeuvre a steel ball through a complex maze with holes and walls

by tipping it in two planar directions using two knobs. The thesis has two

main goals. The first goal is to simulate the game using ODE (Open Dynamics

Engine) [23] that allows a realistic reproduction of the physical properties of the

game. The second is the design and implementation of a biologically inspired

agent, which is able to learn how to play the game autonomously.

The proposed solution combines the principles of neural networks and rein-

forcement learning. To learn the proper movements and to deal with the conver-

gence difficulty of reinforcement learning in a continuous state-space representa-

tion, a hierarchical learning architecture based on the connectionist Q-learning

framework QCON [10] has been developed. As observed in human players and

following the divide and conqueror paradigm, the labyrinth was subdivided into

small regions, where a QCON is assigned to each region. Efficiency analyses

of the algorithms were performed experimentally. It was shown that with the

right parameters values, the solution scales up easily as the number of sub-areas

increases.

1

Statement of Originality

I hereby declare to have written this Diploma Thesis on my own, having used

only the listed resources and tools.

2

3

Contents

1 Introduction 7

1.1 Structure of the Thesis . 8

2 The Simulated Game 10

2.0.1 Open Dynamics Engine 12

2.0.2 The Editor . 12

3 Theoretical background 16

3.1 Artificial Neural Networks . 17

3.1.1 Historical Background . 17

3.1.2 Biological Model . 18

3.1.3 Artificial Neural Networks 19

3.1.4 The Backpropagation Algorithm 21

3.1.5 Summary . 22

3.2 Reinforcement Learning . 24

3.2.1 Introduction . 24

3.2.2 Markov Decision Processes 26

3.2.3 Value Function . 32

3.2.4 Optimality . 33

3.2.5 Value iteration algorithm 34

3.2.6 Q-learning . 35

3.2.7 Exploration versus Exploitation 36

3.2.8 Summary . 37

3.3 Continuous Q-learning . 38

3.3.1 Existing Approaches . 38

4

3.3.2 Summary . 41

3.4 Convergence in Reinforcement Learning 41

3.4.1 Convergence of Value-Iteration in Discrete RL. 41

3.4.2 Convergence in Continuous RL 44

4 The Learning Architecture 45

4.1 The Continuous Q-learning Framework QCON 45

4.2 the two holes Problem . 50

4.2.1 Actions Representation 52

4.2.2 State Representation . 52

4.2.3 Parameters sensitivity . 53

4.3 Experiments . 56

4.4 Results . 57

5 Conclusion 62

5.1 Summary . 62

5.2 Outlook . 63

5

6

Chapter 1

Introduction

Motivated by biological paradigms, this thesis presents the design and evaluation

of control architecture of a virtual player for playing the game ”Labyrinth of

Brio”. The player can learn the task only through interaction with a predefined

environment. The game ”Labyrinth of Brio” is very interesting and requires

concentration, a good perception of events, motor coordination, and fine motor

skills. The aim of the game is to manoeuvre a steel ball from a starting position

to a final position on the board by tipping it so that the ball moves without

falling into any of the holes. The path along which to steer the ball is marked

by a line and is partially bordered by the walls.

To enable an artificial agent to play the game, a physical simulation based

on ODE [23] has been realized. The simulation allows intensive and qualitative

tests of the controlling algorithm saving thereby the cost of the hardware and

learning times. The Labyrinth is simulated in such a way that it is easy to change

its complexity in form of the number of holes and walls and their distribution

on the main board.

Like many other tasks in our every day-life, playing ”Labyrinth of Brio”

requires a learning phase, which is necessary to permit an effective use of the

responsible muscles and an adequate coordination between sensing and act-

ing to get the desirable ball balancing. In contrast to the classical engineering

techniques, which assume generally an absolute knowledge about the agent envi-

ronment to define a complete and accurate model of the problem, in this thesis

7

a biological concept is followed in coming up with a learning approach that

deals with the complexity and the uncertainty of the environment. The learn-

ing approach used to solve the task is the reinforcement learning (RL) method

Q-learning [4]

RL is an approach in machine learning that enables an autonomous agent

to adapt incrementally its policy to choose actions through interaction with the

environment based on received rewards. Like most real world problems, the

input state space of the player in the ”Labyrinth of Brio” is continuous and the

learning agent uses artificial neural networks for generalizing over similar states.

The combination of Q-Learning and artificial neural networks is on one hand

very fascinating and promising for real world problems. On other hand it is prob-

lematic since the discrete Q-Learning’s guarantee of convergence no longer ap-

plies. To deal with the convergence difficulty, a divide and conqueror paradigm

is followed in which a hierarchical learning architecture based on the connection-

ist Q-learning framework QCON [10] has been developed. Different parameter

combinations are evaluated using statistical methods on a simpler version of the

game, example the two holes problem(see Section (4.2)). It was shown that

with the right parameter combination, the agent was able to learn how to play

the whole labyrinth game.

1.1 Structure of the Thesis

This section gives the structure of the thesis with a short summary for each

chapter.

Chapter two presents briefly the game and its physical simulation. Chap-

ter three introduces the basic methods used in the learning architecture with

their theoretical background with an overview over the related works. The first

section gives a brief introduction to neural networks focussing on the multilay-

ered neural networks with backpropagation as learning algorithm. The second

section gives an overview of reinforcement learning with an illustration of the im-

portance of MDP using a simple example for both completely and partially ob-

servable environments. The third section introduces the continuous Q-learning,

a kind of reinforcement learning with continuous state space representation. In

8

addition to this, the convergence of the reinforcement learning in discrete RL

for value iteration is discussed. Chapter four discuses the existing methods for

solving tasks in reinforcement learning with a continuous state space representa-

tion, especially in the areas of combining the concepts of reinforcement learning

and artificial neural networks. The QCON architecture which is introduced by

Lin [10] is also introduced in this chapter. Chapter five introduces the imple-

mentation of the learning architecture and gives a performance evaluation using

different sets of parameters.

9

Chapter 2

The Simulated Game

The ”Labyrinth of Brio” is physically simulated to permit a realistic reproduc-

tion of all the physical parameters in terms of friction between the ball and the

different elements of the labyrinth. For this purpose, the physic engine ODE

(Open Dynamics Engine) [23] is used. The graphic rendering is realized with

OpenGL Graphic Library (OpenGL), which is developed by Silicon Graphics

(SGI). The basic simulator interface was already developed in the context of an

internal project under the name ”walker-sim” in ”Robotics Group, University

of Bremen”. One important contribution of this thesis is the development and

inclusion of the simulator for the ”Labyrinth of Brio” into the exiting framework.

10

Figure 2.1: The original game of Brio in the construction phase to be fitted

for controlling through a robot system. Motors should replace the knobs; two

potentiometers are also implemented in the system.

11

The original game consists of a solid wooden box composed of a board and

two knobs (Pitch, Roll) that permit to tilt a board in two dimensions by trans-

mitting the torque through a flat belt system (see Figure 2.1). The board has

a labyrinth with holes and walls, which are distributed so that they compose

a path, which is clearly marked. The Goal for the player is to go as close as

possible to the goal, which imply that the player follows the given path and

avoids the holes. The further the player proceeds, the higher he or she scores.

The Labyrinth is 32 cm long and 29 cm wide. It contains 40 holes.

2.0.1 Open Dynamics Engine

The simulator is based on the physics framework Open Dynamics Engine (ODE)

[23], which is developed in 2001 from Russel L. Smith and is supported and

continuously improved along the years from a large community . The ODE API

is under the GNU Lesser General Public License. In this work the version 0.5

is used. The ODE engine permits high performance simulation of rigid body

dynamics. It is platform independent using C/C++ API. It integrates advanced

solutions to simulate several joint types and permits also to simulate collision

between the geometries with respect to the friction. ODE uses a first order

integrator characterized by its stability and rapidity. Higher order integrators

are planned in future versions. The contact and friction model are based on the

Dantzig LCP solver as described by Baraff, although a faster approximation to

the Coloumb friction model is implemented.

2.0.2 The Editor

An editor is implemented that permits the user to change quickly the configu-

ration the labyrinth. The user can add walls, holes or delete them by selecting

the appropriate cells (see Figure 2.3)

12

Figure 2.2: The simulation of the ”Brio Labyrinth Game”

13

Figure 2.3: Illustration of the editor on the simulated game ”Labyrinth of Brio”

14

15

Chapter 3

Theoretical background

16

3.1 Artificial Neural Networks

The Artificial Neural Network (ANN) presents a simplified1 mathematical model

of the biological nervous system and consists of an intensively connected group

of processing units called artificial neurons. Their high degree of connectivity

allows a distributed computation and with it an ability to modulate and learn

complex relationships between inputs and outputs.

In the solution presented in this thesis the ANNs are used for the represen-

tation of the action-value functions allowing a generalization over continuous

state-space.

3.1.1 Historical Background

One of the first neural model is from McCulloch and Pitts [11] and uses solely

binary signals. Rosenblatt proposed in 1962 the perceptron [16], which uses nu-

merical weights and presents a more general computing model. The perceptron

generated much interest because of its ability to solve certain pattern classifica-

tion problems. This interest started to fade in 1969 when Minsky and Papert

[12] provided mathematical proofs of the limitations of the perceptron computa-

tional capability. In particular, it is incapable of solving the classic exclusive-or

(XOR) problem.

The last decade, however, has seen renewed interest in neural networks,

both among researchers and in areas of application. The development of more

powerful networks, better training algorithms, and improved hardware has all

contributed to the revival of the field. Neural-network paradigms in recent

years include the Boltzmann machine, Hopfield’s network, Kohonen’s network,

Rumelhart’s competitive learning model, Fukushima’s model, and Carpenter

and Grossberg’s Adaptive Resonance Theory. The field has generated interest

from researchers in such diverse areas as engineering, computer science, psy-

chology, neuroscience, physics, and mathematics. The power and usefulness of

artificial neural networks have been demonstrated in several applications.

In this thesis we describe and use one of the most used neural model, the

feed-forward network with the Backpropagation algorithm.
1the mathematical model is considered simple because of the complexity of the biological

paradigm

17

3.1.2 Biological Model

The main objective of the ANN is to reproduce the characteristics of the biologi-

cal computing which allow animals to cope autonomously with different real-life

problems beginning with the so-called simple skills like reflexes, coordination

of movement, surmounting obstacles and ending with very complex cognitive

behaviors like learning, applying knowledge and changing preferences.

The basic building blocks thereby are the neurons. A neuron is a small

cell that receives electro-chemical stimulus from several sources and responses

with an electrical impulse which will be transfused again to other neurons or

effector-cells. One neuron is typically composed of a cell body -or a soma-,

a nucleus, dendritic trees presenting the input connections through synapses

to other neurons and an axon responsible of carrying the nerve signals away

from the soma and transmit it to the target neurons through the axon terminal

(Fig.3.1).

Figure 3.1: Structure of a typical neuron

One neuron can be connected to thousands of other neurons. The connec-

tions are done via inhibitory or excitatory synapses. Those can either increase

or decrease activity in the target neuron. The Activity of neurons is determined

from an intern electrical potential called the Membran-potential. When it at-

tains a threshold the neuron fires by sending a set of action potentials through

the axon to the (chemical) synapses where neurotransmitter are released causing

again a localized change in potential in the membrane of the target neuron.

18

In the actual thesis we will not deal with more details but it is important

here to notice how difficult it is to simulate the behaviour of the biological

neural network which is influenced by a multitude of parameters. However there

is a major theory, claims that the basics of learning result from the synaptic

plasticity allowing connection strengths between two neurons to change.[21], [5]

Donald Hebb [7] was the first to introduce the importance of metabolic changes

for learning in biological systems and states:

Let us assume that the persistence or repetition of a reverberatory

activity (or ”trace”) tends to induce lasting cellular changes that add

to its stability . . .When an axon of cell A is near enough to excite

a cell B and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both cells

such that A’s efficiency, as one of the cells firing B, is increased.

The Hebbian learning refers in general to an abstraction of the original principle

proposed by Hebb. In The ANN the most of learning methods try to implement

this principle for adjusting weights between nodes so that each weight better

represents the relationship between the nodes.

3.1.3 Artificial Neural Networks

One Neuron

In general one neuron can be simulated with a composition of a weighted sum-

mation and a primitive function f . The first part reduce the n argument to a

single numerical value and the activation function f produces the output of this

unit taking that single value as its argument (Fig.3.2). Note that in many liter-

ature the function f is called transfer function. We find that both terms have

the same meaning in this context because the transfer can happen only, and

only if the neuron is activated. The type of the activation function influences

the behaviour of an ANN. Which typically falls into one of three categories:

• linear: The output activity is proportional to the total weighted output.

• threshold : the neuron is fired, only if the weighted summation of the

input is greater than or less than some threshold value.

19

• sigmoid : the output varies in this case continuously but not linearly as

the input changes. That allows neural networks based on it to represent

non-linear relationships between inputs and outputs. Sigmoid types bear

a greater resemblance to the behaviour of real neurons than do linear or

threshold units.

Figure 3.2: A general neuron model. The output is a result of the composition of

two operations first the summation of the inputs multiplied with the associated

connection weight and an activation function f

Feedforward Neural Network

A feedforward neural network consists of several layers, and each layer has a

number of neurons in it. Neurons in one layer are connected to multiple or all

neurons in the next layer. Input is fed to the neurons in input layer, and output

is obtained from the neurons in the last layer. Feed-forward ANNs allow signals

to travel one way only, from input to output. There is no feedback i.e. the

output of any layer does not affect that same layer.

The Feed-forward neural network consists of three groups, or layers of units:

a layer of ”input” units is connected to a layer of ”hidden” units, which is

connected to a layer of ”output” units. (See Figure 3.3). The activity of the

input units represents the raw information given to the network, the activity of

each hidden units is determined by the activities received from the input units

and from the weighted connections. In the same way the behavior of the output

units depends on the activity of the hidden units and on the connections that

link them to the output units.

20

Figure 3.3: A Fully Connected neural network with 4 neurons in input layer, 3

neurons in hidden layer and 2 neurons in output layer.

The Learning algorithm , which we will discuss later, will change the strength

(weights) of the connections in the network to produce a desired signal flow.

3.1.4 The Backpropagation Algorithm

The backpropagation algorithm is the most widely used method for training

multilayer feed-forward artificial neural networks. The term is an abbreviation

for ”backwards propagation of errors” and means the errors are propagated

backwards from the output nodes to the inner nodes.

The activation function

The algorithm looks for weights that minimize the error using the gradient

descent method which requires that the activation function to be continuous and

differentiable. One of the more popular activation functions for backpropagation

networks is the sigmoid function, sigc, defined by the expression:

sigc(x) =
1

1 + e−cx
(3.1)

The parameter c determines the slope of the function. Higher values of c bring

the shape of the sigmoid closer to that of the step function. Another alternative

to the sigmoid is the symmetrical sigmoid, S, defined as:

S(x) =
1− e−x

1 + e−x
(3.2)

21

This is the hyperbolic tangent for the argument x/2. For both functions, the

output varies continuously but not linearly as the input changes, which allows

neural networks to represent non linear relationships between inputs and out-

puts.

The Algorithm

Given a feedforward Network and training data set {xp, tp|p = 1, 2, . . . , P}

,(input, target). Not that the training data can be incrementally generated using

reinforcement learning algorithms (See QCON learning algorithm 4) through

Interaction with the environment.

The Algorithm loop can be subdivided into tree phases:

1. Forward Pass: Compute forward the output of a given input xp

2. Backward Pass: Compare the resulting output Opwith the desired output

tp . And propagate the error backward.

3. Update the weights for all neurons using the errors and gradient descent

method.

3.1.5 Summary

The approximation of the biological computation system is on one hand very

fascinating and promising for solving very complex problems. On the other hand

it is very difficult to do. Based on the biological paradigms the artificial neural

networks are complex nonlinear functions with many parameters: number of

units, number of layers, type of connections, kind of activation function and

Learning algorithm. We focused on the back-propagation algorithm which uses

the gradient descent method looking for the minimum of the error function in

weight space. Multilayer feed-forward neural network can represent any function

given the right number of units. For our problem we use the neural networks as

action-values approximator. To minimize the number of parameters, we consider

only a fully connected network with one hidden layer. We make several empirical

tests to find the best number of neurons in the hidden Layer.

.

22

Algorithm 1 The Backpropagation Algorithm for learning in multlayer net-

works. (taken from [15])
Require: Feed-forward network with the weight matrix wji with Q Layers and

activation function f .

Training set {(xp, tp)|p = 1, 2, . . . , P} ,(input, target)

1: Initialize all weights wji with a small random number in [−λ, λ]

2: for each input output tuple xp, tp do

3: repeat

4: Compute forward the output Oq
jof a given input xp for every unit j in

the layer q :

Oq
j = f(

∑
i

Oq−1
i wq

ji))

5: Calculate the delta values:

δQ
j = (OQ

j − tpj)f
′(HQ

j)

where Hq
j =

∑
i w(q−1)ix

q−1
i : the weighted summation of the inputs of

the jth unit in qth layer.

6: Compute the deltas for the previous layers:

δq−1
j = f ′(Hq−1

j)
∑

i

δq
j wq

ij

for every j in every layer q = Q,Q− 1, . . . , 2.

7: Update all weights wji

wji ← wji + ∆wq
ji

for every layer q. with:

∆wq
ji = ηδq

i Oq−1
j

η is the learning rate.

8: until Some stopiong criterion is satisfied.(Like the Error is small enough).

9: end for

10: return Neural network with the new weights

23

3.2 Reinforcement Learning

The term Reinforcement Learning (RL) denotes both a set of problems and a

set of solutions. In this section the problem in terms of optimality, by using

the Bellmann equation for a Markov decision process will be discussed. Two

solutions will be introduced. First the dynamic programming algorithm value

iteration. The second solution is the Q-Learning algorithm, which is used in our

architecture to solve the learning problem in the given labyrinth.

3.2.1 Introduction

Reinforcement learning is a kind of machine learning where the agent learns

”what to do” through its interaction with the environment. Rather than su-

pervised learning where examples are provided from an external teacher, in

reinforcement learning tasks the agent learns from trial and error, and receives

only an indication of an actions goodness in the form of a simple scalar rein-

forcement2 signal. This can be given in every learning step or, more commonly,

only after a set of successive steps. This is known as delayed reward and leads

to the credit assignment problem. An single time-step can generally been de-

scribed as following (Fig.3.4) : the learning agent is in a state s and according

to its experiences, follows its current policy, choosing an appropriate action

a. It then perceives a new state s′ and recieves a scalar reward r. The goal

is to find or develop a policy that maximizes the agents performance which is

proportional to the cumulative reward it receives.

The study of reinforcing events dates back to the end of 19.th century pre-

cisely in the psychology of Thorndike [25].His law of effect describes the effect

of reinforcement in the learning process by animals, who tends to reselect ac-

tions proportional to the goodness of their past outcome. Animals also make

an association between stimulus and response. This law is considered a prin-

ciple of psychology, and is supported by more recent works like J. Herrnstein

[8], which formulate the basis of the matching law describing the relationship

between the relative rates of response and the relative rates of reinforcement

based on experiments with pigeons.
2Also known as reward or payoff . in the rest of this thesis we use the term reward.

24

Figure 3.4: An illustration of a Reinforcement Learning framework. The Agent

interacts with the environment by receiving state and reward information and

performing an action.

In the field of Artificial Intelligent Arthur Samuel [18] may have been the

first to implement a reinforcement learning algorithm, with his solution of the

checkers-problem. But Minsky [13] was certainly the first to include psycholog-

ical reinforcement learning into artificial learning.

The other important background discipline for reinforcement Learning is

optimal control giving a solid mathematical and a formal description of the

problem and its solutions. Optimal control theory deals with the problem of

finding a controller to minimize the costs for a given dynamic system. Some very

important works in this area are the results from Richard Bellman [3]. The next

sections deal with the equations bearing his name, and formulate the reinforce-

ment learning problem and its solutions particularly in the form of dynamic

programming and the value iteration algorithm. First the discrete stochastic

version of the optimal control problem known as the Markovian Decision Pro-

cess (MDP) will be introduced.

25

3.2.2 Markov Decision Processes

We assume that the learning agent lives in an environment E, and observes

states which are included in the finite set S, and performs actions that belong

to the finite set A.

Elements of Reinforcement Learning

We assume that the learning agent interact with the environment E and can

observe a set of states S and reward values R, and that its actions are included

in a set A. We define in this section some entities that are found in RL problems.

These definitions will simplify the formal description below.

Policy: A policy π is the mapping from the current state s ∈ S to an action

a ∈ A, defining the behavior of the agent. It is often stochastic 3, to

permit the agent to deal with the exploration-exploitation dilemma. In

this case the policy function maps from S × A to a value in the interval

[0,1]:

deterministic policy :

π : S → A

or stochastic policy:

π : S ×A→ [0, 1]

Reward Function: Determines the goal in a reinforcement learning task, and

maps from a given state-action pair (s, a) ∈ S×A to a scalar value r ∈ R:

R : S ×A→ R

It can be stochastic too:

R : S ×A× S → R

Value Function: Defines how good a state or a state-action pair is according

to past experiences. Different from reward function where the rewards are

immediate for a given state-action pair, the value function deals with the

delayed reward problem.
3A stochastic function varies in time for instance. Its future values can not be precisely

predicted, only with a certain amount of probability

26

The value function in the deterministic case:

V : S → R

The value function in the stochastic case:

Q : S ×A→ R

Transition Function: Given a state s ∈ S and an action a ∈ A the transition

function returns the next state s′ ∈ S . In real world problems the tran-

sition function is generally stochastic. In this case it also take a possible

next state s′ ∈ S as an argument and return the probability that action a

in state s will lead to state s′.

deterministic transition function:

P : S ×A→ S

stochastic transition function:

P : S ×A× S → [0, 1]

Environment Dynamics: Assuming that the sets A and S are finite, in a RL

problem, the dynamic of the environment are defined by specifying the

complete Probability distribution:

Pr{st+1 = s′, rt+1 = r′|st, at, rt, st−1, at−1, . . . , r1, s0, a0} (3.3)

for all possible next states s′ and rewards r′, and all possible values of the

current and past events: st, at, rt, st−1, at−1, . . . , r1, s0, a0.

Markov decision Process

In terms of a discrete-time stochastic dynamic system, if the probability distri-

bution of future states and rewards depends only upon the present state and

present reward and not on any past state or reward, then the environment pro-

cesses the Markov property. In this case the dynamics of the environment are

fully specified by:

Pr{st+1 = s′, rt+1 = r′|st, at} (3.4)

27

for all possible states s′ and rewards r′, and the current event: st, at.

Formally, the Markov property is exists if and only if (3.3) is equal to (3.4)

for all possible next states s′ and rewards r′, and all possible values of the

current and past events: st, at, rt, st−1, at−1, . . . , r1, s0, a0.

In this case the dynamic of the environment is completely specified by the

transition probability P and the reward function R.

A Markov decision process is a reinforcement learning task that satisfies the

Markov property and is composed from the 4 tuple (S, A, P,R) which represents

the State set, the action set, the transition probability, and the reward function,

respectively.

If the state and action sets are finite then the process is called finite Markov

decision process. A deterministic Markov decision process is an MDP with

deterministic state transition probabilities.

Example

Figure 3.5: (b) A simple 2× 3 maze world. (a) Illustration of the different cell

types in the maze. (c) An example of an partially observable MDP where the

agent don’t make the difference between the two cells c1,3 and c1,5 and has for

both the internal observation Oc

28

In practice, If we want to design a reinforcement learning task as an MDP

for an agent in a given environment, then we have to give the agent the ability

at each time step to perceive all the knowledge that it needs to decide what

action is best to take next. In other words, the learning agent’s state signal

summarizes past sensations compactly. To make the problem more clear we

consider the following example:

Suppose that a robot is situated in the small maze shown in Figure 3.5 a and

b. Begining in the start state, it must choose an action at each time step. There

are two possibles terminal states: The hole (which it should avoid) at cell (2,3),

and the food (which is the goal) at cell (2,4). To focus on the Markov property,

thereby simplifying the problem, we assume that the transition function and

reward function are deterministic. The two terminal states have, respectively,

the rewards -1 for the hole, and +1 for the goal. In all other states the agent

receives a reward of value zero. The available actions are called Up, Down, Left,

and Right. These take the agent to the neighboring cells immediately above,

below, left, or right of the current cell. If the agent bumps into a wall or into

the boundary, it stays in the same cell.

In summary,

Non-Markov case: We suppose that the agent has sensors that allow him

to perceive if a neighbouring cell is from type wall or type start, but they

do not permit him to make the difference between an empty, goal or hole

neighbouring cell’s type. Four light based sensors (like infrared) that are

installed on the robot (one for each direction) can for example fulfil such

a task. The hole is very difficult to be detected before that the robot land

on the correspondent cell and the goal is very small and is also always out

of measurement range of the agents sensors if it is not in the goal cell.

Unfortunately there are, amongst others, two critical cells c(1,3) and c(1,5)

that represent the same observation oc from the robot. These are critic

because, of the robot’s point of view, with same action ”Right” the robot

can lands direct to the hole or to the goal cells corresponding respectively

to the internal state oh and og. In the point of view from the robot the

cells c(1,1) ,c(1,2), c(1,4) present respectively the pairwise different internal

observations o1, o2 and o4 Figure (Fig.3.5(c)).

29

Reward(c(i,j)) =

1 if i = 2 and j = 5

−1 if i = 2 and j = 3

0 otherwise

P (c(i,j), UP) =

 c(i,j+1) if c(i,j+1) 6= WALL and j < 6

c(i,j) otherwise

P (c(i,j), Down) =

 c(i,j−1) if c(i,j−1) 6= WALL and j > 0

c(i,j) otherwise

P (c(i,j), Left) =

 c(i−1,j) if c(i−1,j) 6= WALL and i > 0

c(i,j) otherwise

P (c(i,j), Right) =

 c(i+1,j) if c(i+1,j) 6= WALL and i < 2

c(i,j) otherwise

Figure 3.6: The dynamic of the environment for the example illustrated in the figure

(Fig.3.5(a) and (b))

30

We have,

Pr{st+1 = oh, rt+1 = −1|oc, Right, o2, UP, s1, UP} = 1 (3.5)

and

Pr{st+1 = og, rt+1 = +1|oc, Right, o4, UP, oc, UP, o2, UP, o1, UP} = 1

(3.6)

also

Pr{st+1 = og, rt+1 = +1|oc, Right} = 0.5 (3.7)

and

Pr{st+1 = oh, rt+1 = −1|oc, Right} = 0.5 (3.8)

We have (3.5) 6= (3.8), also The markov property is not verified.

Markov case: On way to make the problem verify the markov property

is to give the robot the ability to distinguish between every 2 cells in

the maze. This can be realized for example by investing in sensors with

larger measurement range and adding sensors for the detection of the type

of the lateral cells. In such case it is simple to verify that every cell in

the maze, which is different from type WALL, corresponds to one, and

only, one internal robot’s state. If we use the same notation as in the

not markov case. The cells c(1,3) and c(1,5) correspond now to different

internal states s3 and s5 respectively further more we have now for every

next state i ∈ {1, . . . , 5} and next reward r′ ∈ {0,−1, 1} and all possible

value of the current and past events ot, at, ot−1, at−1, . . . , r1, so0, o0:

Pr{st+1 = si, rt+1 = ri|sc, Right, s2, UP, s1, UP} = 1

Pr{st+1 = si, rt+1 = ri|st, at, st−1, at−1, . . . , r1, s0, a0} = 1

and

Pr{st+1 = si, rt+1 = r′|st, at} = 1

Also the markov property is verified in this case.

The Markov property is important in reinforcement learning because deci-

sions are based on values which assumed to be a function only of the current

state.

31

3.2.3 Value Function

The value function, as described further, presents the quality of a given state,

or a given state-action pair and therefore allow the learning agent to estimate

the goodness of a given state, or to decide which action is eventually better

to perform in a given state. Almost all reinforcement learning algorithms are

based on optimizing this value. In a long run the agent goal is to maximize the

received reward. An entity that summarize the received rewards is called the

Return, there are many variations of it, but a general and common one is the

discounted Return :

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑

k=0

γkrt+k+1 (3.9)

where the discount factor γ ∈ [0, 1] determines the worthiness of the expected

rewards in the future. When γ is close to 0 , the agent try to maximize only the

immediate rewards and there in the future are insignificant. As γ approaches 1,

the future rewards are taken into account more strongly. If rewards are bounded

by rmax and γ < 1 then the return is also bounded:

∞∑
k=0

γkrt+k+1 ≤
∞∑

k=0

γkrmax

≤ rmax

∞∑
k=0

γk (sum of infinite geometric series)

∞∑
k=0

γkrt+k+1 ≤ rmax

1− γ
(3.10)

The value of a state s depend on the policy executed form the learning agent.

the value of a state is defined in respect to a specific policy π and a given state

and will be denoted with V π(s).

V π(s) is the expected return when starting in s and following π :

V π(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
(3.11)

Where t is any time step.

Similarly, the value the pair action a and state s following a policy π is equal

to the expected return starting from s, taking the action a , and following π :

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
(3.12)

32

Qπ is called the action value.

The both values verify a recursive relationship between a given state s and

the possible future states s′ futur and can be developed as follow:

V π(s) = Eπ {Rt|st = s}

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s

}

=
∑

a

π(s, a)
∑
s′

P (s, a, s′)

[
R(s, a, s′) + γEπ

{ ∞∑
k=0

γkrt+k+2|st+1 = s′

}]
=

∑
a

π(s, a)
∑
s′

P (s, a, s′) [R(s, a, s′) + γV π(s′)] (3.13)

Likewise the recursive relationship for the action-value function is:

Qπ(s, a) =
∑
s′

P (s, a, s′) [R(s, a, s′) + γV π(s′)] (3.14)

with a deterministic transition probability the two recursive expressions look

simpler:

V π(s) =
∑

a

π(s, a) [R(s) + γV π(s′)] (3.15)

and

Qπ(s, a) = R(s, a) + γV π(s′) (3.16)

where s’ the next state following the deterministic transition function P : P (s, a) =

s′. The both relationships (3.13) and (3.14) are known respectively as the Bell-

man Equation for state-value and action-value.

3.2.4 Optimality

As mentioned further the purpose of the most learn algorithms is to find the

optimal value function, whereon the optimal policies are based. The value

functions define a partial ordering over policies. If we the denote Π the set of

all possible policy, then : π ≥ π′ if and only if V π(s) ≥ V π′
(s) for all s ∈ S and

π and π′ ∈ Π also an optimal policy verify:

π∗(s) ≥ π(s) ∀s ∈ S,∀π ∈ Π (3.17)

33

An optimal Policy π∗ is based on the Optimal state-value function:

π∗(s) = arg max
a∈A(s)

V ∗(s) (3.18)

A(s) is the set of all possible actions in the state s. the Optimal state-value

function V ∗ = V π∗
, is given by:

V ∗(s) = max
π

V π(s) ∀s ∈ S. (3.19)

Similarly the Optimal action-value function is given by:

Q∗(s, a) = max
π

Qπ(s, a) ∀(s, a) ∈ S ×A. (3.20)

Using the Bellman Equations for state-value (3.13) and action-value (3.14)

and (3.19) and (3.20) we get the Bellman optimality equations for state and

action values:

V ∗(s) = max
a

∑
s′

P (s, a, s′) [R(s, a, s′) + γV ∗(s′)] . (3.21)

Q∗(s, a) =
∑
s′

P (s, a, s′)
[
R(s, a, s′) + γ max

a′
Q∗(s′, a′)

]
. (3.22)

If |S| = n, then (3.21) presents a system of n equations with n unknowns. Due

to the max operator The equations are non-linear. And therefore they can not

be solved with linear algebra techniques. In the next section we discuss an

iterative approach to solve this system of equations.

3.2.5 Value iteration algorithm

The Value iteration algorithm solve the Bellman optimal state value function

(3.21) using an iterative approach. Starting with an arbitrary initial values for

all states, the value-state will be updated using the iteration step at ith iteration:

Vi+1(s) = max
a

∑
s′

P (s, a, s′) [R(s, a, s′) + γVi(s′)] ∀s ∈ S (3.23)

If (3.23) infinitely often used. the final value must be the solution of the

bellman optimality equation (3.21)

34

Algorithm 2 The Value-Iteration Algorithm
Require:

1: mdp, an MDP(S, A, P,R)

2: γ ∈ [0, 1],discount factor

3: ε, a small positive number (the maximum error allowed in the state-value)

Ensure: An approximation of the optimal Value-function

4: repeat

5: δ ← 0

6: Initialize V arbitrarily for all the states s ∈ S

7: for each s ∈ S do

8: v ← V (s)

9: V (s) = maxa

∑
s′ P (s, a, s′)[R(s, a, s′) + γV (s′)]

10: δ ← max(δ, |V (s)− v|)

11: end for

12: until δ < ε (1−γ)
γ

13: return V

3.2.6 Q-learning

Q-Learning was proposed by Watkins [4] for solving Markovian decision prob-

lems, and has the properties of dynamic programming using the optimal Bellman

equation to update the action-value function with the advantage of no require-

ment of the environment dynamic in form of the rewards R and the transition

P probabilities. Therefore it is more appropriate for on-line applications. The

One-step Q-learning, is given by:

Q(s, a)← Q(s, a) + α

[
r + γ max

a′∈A(s)
Q(s′, a′)−Q(s, a)

]
(3.24)

Where α denote the learning rate and γ the discount factor.

This update equation is calculated whenever action a is executed in state s and

leading to state s′ and receiving the immediate reward r.

The Q-learning converge to the optimal action-value Q* with probability one

and consequently yields the optimal policy, under the following assumptions [27]:

1. All state-action pairs appear in the update an infinite number of times

2. The learning rate α is decreased with a suitable schedule

35

3. the Q-values are presented in a lookup-table.

The algotithm of Q-Learning for a look-up table as presentations of the actions

values is given in:

Algorithm 3 The Q-learning algorithm
Require:

1: Q, a table of action values

2: γ ∈ [0, 1], the discount factor

3: α, the learning rate

Ensure: An approximation of the optimal Action-value Q∗

4: Initialize Q(s,a) arbitrarily for all the state-action pair (s,a)

5: repeat

6: Initialize s

7: Choose a using policy derived from Q

8: Take the action a, observe the reward r and the new state s’

9: Q(s, a)← Q(s, a) + α
[
r + γ maxa′∈A(s) Q(s′, a′)−Q(s, a)

10: s← s′

11: until s is terminal

3.2.7 Exploration versus Exploitation

In online reinforcement learning methods , like Q-learning, the agent has always

to deal with the exploration- exploitation dilemma. The environment explo-

ration gives more chance to yield the best solution in term of the optimal pol-

icy (see condition 1 in the convergence conditions in Q-learning). Exploration

means also trying something new what is mostly accompanied with more cost.

The question is how to minimize the cost of learning by exploiting the knowledge

already acquired. Or better how can the agent balance between exploration and

exploitation. One solution is to select the best action stochastically. The Boltz-

mann distribution is one of the most function used to determine the probability

to execute an action based on the learned policy. Let A be the set of all actions

that can executed from the learning agent. The probability of executing an

action a ∈ A in a state s is determined by the following equation.

36

P (a) =
eQ(s,a)/T∑

a′∈A eQ(s,a′)/T

Where T is a positive parameter called temperature. High temperature

cause more exploration because the actions probability tends to be similar. Low

Temperature cause a greater difference in selection probability for actions that

differ in their value-action in this case the greedy action is very probable to be

chosen which means the agent tends to exploit its learned policy.

3.2.8 Summary

In this section a brief overview over the theory of reinforcement learning is given.

The importance of Markov decision property in reinforcement learning task is

illustrated using a simple example for both completely and partially observable

environments.

37

3.3 Continuous Q-learning

There are many reasons that make generalization in reinforcement learning im-

portant. The memory requirements for a look-up table representation in tasks

with many possible states and actions are too high and cannot be implemented

(the cruse of dimensionality).

In addition and in order to evaluate a good policy the agent has to visit all

states and try all actions. This is normally quite time consuming and needs

a satisfying exploration strategy. Generalization therefore can save memory

and time by approximating the value function for unknown unvisited states

and untried actions. In principle any function approximation method, which

are extensively studied in supervised learning, can be combined with RL to

generalize and estimate over state-space.

3.3.1 Existing Approaches

There are many approaches for combining the Q-learning framework with gen-

eralization methods to solve problems in continuous state spaces. The following

sections briefly describe some of them.

CMAC Q-Learning

Saito and Fukuda [17] proposed a continuous state Q-learning architecture us-

ing Albus’s CMAC(Cerebellar Model Articulation controller) [2]. the CMAC is

a function approximation system that features spatial locality. It is a compro-

mise between a look up table and a weight-based approximator. it computes a

function f(x1 . . . xn), where n is the input space dimension. The input space is

subdivided into hyper-rectangles, each of which corresponds to a memory cell

. The contents of the memory cells are the weights, which are adjusted during

training. The output of a CMAC is the algebraic sum of the weights in all the

memory cells activated by the input point. In the CMAC based Q-Learning the

inputs to the CMAC are the state and action and the output is the expected

Q-value.

Santamaria et al. [19] investigated the CMAC-Qlearning method on optimal

control tasks. The tasks included reward penalties for energy use and coarse

38

motions The generalization and resolution of the CMAC depends on the number

of cells in the CMAC. This may detoriorate the performance of the CMAC in

the situations where some cells are never used.

Memory-Based Q-Learning

Santamaria et al. [19] evaluated memory-based Q-Learning methods. Memory-

based aproximators memorize statistically experiences. The current Q is com-

puted from a weighted average over the nearest neighbors Q’s according to the

similarity metric. A new point can be added to the memory when the nearest

neighbors are too far. In this way, the memory expands dynamically depending

on the exploration of new regions of the state-action space.

Linearly Weighted Combination methods

Takahashi et al. [24] proposed the continously valued Q-learning approach using

coarse discretisation of states and actions. Like CMAC Q-learning, the proposed

method allocates approximation resources uniformly across the state and action

space. It could be combined with the state pre-distortion approach (Santamaria

et al., 1998) [19] to permit an more efficiently allocation of resources if a priori

knowledge is available.

The procedure improved performance in different experiments. However,

the method is rather task specific. Furthermore, no procedure for removing

boundaries was provided, limiting the adaptability of the method if conditions

change.

Hedger

The Hedger system proposed by Smart and Kaelbling [22] approximates the

action-values using a fixed number of points. each point represent a state, ac-

tion and expected value set. A hyper-elliptical hull is constructed around the

available points. The action-value for a state-action pair is calculated by check-

ing that the corresponding point is within the training data. If it is the case a

Locally Weighted Regression (LWR) is used to estimate the value function out-

put. Else if the point is outside of the training data a Local weighted Averaging

39

(LWA) is applied to return the appropriate value. Finding the highest values

action required a time consuming iterative process.

The Hedger system was applied to a robot to solve a corridor following

experiment. The state is composed from the robot’s steering angle and position

relative to the corridor, and the distance to the end of the corridor where the

a Reward area is defined. The action is reduced to control the steering but not

the translation velocity. The reward is provided if the robot reach the reward

area. Smart and Kaelbling [22] also successfully demonstrated the algorithm’s

off-policy learning capabilities. The stability of the algorithm was enhanced

by maintaining knowledge about which regions of the state-action space were

believed to be approximated properly.

Q-self Organising Map

Sehad and Touzet [20] applied the Q-KOHON system based on Kohonen’s [9]

self organising map. The state, action, and expected value were the elements

of the self organising map feature vector. The self organising map generalises

between similar states and simular actions. Touzet suggests that it is possi-

ple to interpret the feature vectors in a self organising map-based implementa-

tion; whereas feedforward neural network-based systems are less transparent are

therefor harder to analyse. The Q-KOHON system was evaluated on a Khepera

mobile robot. The robot learnt to avoid obstacles in a constructed environment

using infra-red sensors [26]. There is no mention of penalities for coarse motion

or the inclusion of current velocity in the state vector. Actions were chosen by

searching for the self organising map feature vector that most closely matched

the state and the maximum representable value (one). The matching process

has a potential flaw. If a state has a low expected value, rather than a feature

vector that has a similar state vector. This could result in an action that is not

appropriate for the current state.

Fuzzy Q-Learning

Fuzzy controllers map continuous state into memberschip of discrete classes

(fuzzification), then pass the membership through logical rules producing ac-

tions, and finally combine the actions based on the strength of their member-

40

ship (defuzzificaion) [29]. Fuzzy logic appears to be an ideal tol for creating

a continuous Q-learning system: fuzzy logic generalises discrete rules for con-

timuous data and Q-lewarning can selec t discrete rules. Amajor difficulty is

that fuzzy controllers execute many discrete rules simultaneously, complicating

credit assignment.

Glorennec’s [6] system regarded every possible complete fuzzy controller as

an action. Consequently, there was an enormous space of actions to be searched

and generalisation between actions was limited.

3.3.2 Summary

Reinforcement learning problems involve finding a policy that will maximise

rewards over time. Q-Learning is a model-free approach to solving reinforcement

learning problems that is capable of learning off-policy. Off-policfy learning

techniques have the potential to contiribute toward the parsimonious use of

measured data, the most expensive resource in robotics.

3.4 Convergence in Reinforcement Learning

3.4.1 Convergence of Value-Iteration in Discrete RL.

The demonstration of the convergence of the value iteration is based on the

Banach fixed point theorem (also known as the contraction mapping the-

orem or contraction mapping principle), which guarantees the existence and

uniqueness of fixed points of certain self maps of metric spaces, and the con-

vergence of sequences defined recursively and based on this contraction upon to

this fixed point. We introduce this thereom and we show that the update using

in the Value-iteration algorithm (eq:3.23) correspond to a self-maps required in

this theorem. By the way we introduce some definitions and lemmas that are

necessarry to make the proof easier.

Definition Let (X, d) be a complete metric space. A function T : X → X is

said to be a contraction mapping on X if there is a constant q with 0 ≤ q < 1

such that d(Tx, Ty) ≤ q · d(x, y) for all x, y ∈ X.

41

Definition A fixed point x of a function f :X → X, is a point that remains

constant upon application of that function, i.e.: f(x) = x.

Theorem 3.4.1 (Banach fixed point theorem) Every contraction has a unique

fixed point.

Let T be a contraction mapping on (X, d) with constant q and unique fixed

point x∗ ∈ X. For any x0 ∈ X, define recursively the following sequence xn =

Txn−1for n = 1, 2, 3, . . .

This sequence converges, and its limit is x∗

Let RS denote the space of functions mapping from the states set to R,

wherein the value functions are included:

RS = {V |V : S → R} (3.25)

Note that V ∈ RS can be considered as a vector of |S| component:

V = (V (s0), V (s1), . . . , V (s|S|))

Let T denote the operation applied to update the state-value for every state in

(3.23) and defined as follow T : RS → RS , V 7→ TV with:

(TV)(s)→ max
a

∑
s′

P (s, a, s′) [R(s, a, s′) + γV (s′)] ∀s ∈ S (3.26)

Let ||V ||denote the max-norm of V ∈ RS , which return biggest component

of V.

||V || = max
s∈S
|V (s)| ∀V ∈ RS (3.27)

The distance d|| between two elements V1, V2 ∈ RS is the maximum difference

between any two corresponding elements: ||V1 − V2||

d||(V1, V2) = ||V1 − V 2||, ∀V1, V2 ∈ RS . (3.28)

Lemma 3.4.2 Let RA denote the space of functions mapping from the Action

set to R

Consider the max-map :maxa : RA → R. Then:

|max
a

f(a)−max
a

g(a)| ≤ max
a
|f(a)− f(b)|. ∀f, g ∈ RA

42

Proof we denote maxa f(a) = f(a1) and maxa g(a) = g(a2).

We suppose that f(a1) ≥ g(a2) then:

|max
a

f(a)−max
a

g(a)| = (f(a1)− g(a2)) ≤ (f(a1)− g(a1)) ≤ maxa|f(a)− f(b)|

In the other case f(a1) ≤ g(a2) we have the same resulte by symmetry.

Proposition 3.4.3 T is a contraction on (RS , d||)

Proof

d||(TV1, TV2) = ||TV1 − TV 2|| (3.28)

= max
s∈S
|TV1(s)− TV 2(s)| (3.27)

lemma(3.4.2)

≤ max
s∈S

max
a∈A(s)

∣∣∣∣∣∑
s′

P (s, a, s′) [R(s, a, s′) + γV1(s′)]−

−
∑
s′

P (s, a, s′) [R(s, a, s′) + γV2(s′)]

∣∣∣∣∣
≤ max

s∈S
max

a

∑
s′

P (s, a, s′)γ|V1(s′)− V2(s′)|

≤ γ max
s∈S

max
a

∑
s′

P (s, a, s′)||V1 − V2||

≤ γ max
s∈S

max
a
||V1(s)− V2(s)||

≤ γ||V1 − V2||

d||(TV1, TV2) ≤ γd||(V1, V2) �.

That is, the update in (3.23) is a contraction by a factor of λ on (RS , d||).

Hence, and due to banach theorem (3.4.1) the Value iteration always converges

to a unique solution of the Bellman equations.

The Convergence in Discrete Q-learning

The Q-learning converge to the optimal action-value Q* with probability one

and consequently yields the optimal policy, under the following assumptions

[27]:

1. All state-action pairs appear in the update an infinite number of times

2. The learning rate α is decreased with a suitable schedule

3. the Q-values are presented in a lookup-table.

43

3.4.2 Convergence in Continuous RL

Rather than discrete states case, in the continuous state case it is not possible

to exactly store the value function. The value function is only approximated,

which forfeils the guarentee of convergence [27]. The partial solutions proposed

are only suitable for specialised study cases.

Santamaria [19] suggests practical ways of improving the convergence of

Q-learning with function approximation. We present here the spacial locality

approach. Spacial locality avoid the unlearning problem which occurs with

neural networks is used as approximator. The unlearning problem presents the

case when the input to neural network covers only a small region of the input

space for long periods time and the network forgets the correct output for other

regions of state space. A local spacial locality approach consists of reducing

the input space to small regions and assigning an local approximator to each

one. This alleviates the unlearning problem, because the state varies only over

a small range of values and the approximated values, in other regions, should

be preserved.

44

45

Chapter 4

The Learning Architecture

To deal with the convergence difficulty in continuous reinforcement learning, a

spatial locality based solution is implemented (See Chapter 2, section conver-

gence in continuous reinforcement learning).

Following the divide and conqueror paradigm the labyrinth was subdivided

into small regions, where a QCON is assigned to each region (Figure 4.2/4.1).

First the QCONs are trained separately on their respective subareas. In

order to connect two subsequent areas, the subgoal of the first area is used as a

starting region for the next one. In the play phase, based on the current position

of the ball, a spatial selector module selects the appropriate learned QCON to

be active and sends the output of the QCON to the actuators.

This solution is inspired by ”place cells” [14] found in the hippocampal

brain region of rats. Place cells are found to be selectively active when the

rat is situated in different locations while performing navigational tasks in a

labyrinth environment [28].

In following the proposed solution is evaluated on a simple problem, with

the goal to find the best parameter combination that will be used after that for

solving the whole problem.

4.1 The Continuous Q-learning Framework QCON

The continuous Q-learning framework QCON was proposed by Lin [10]. The

idea is to use the advantage of Q-learning which is one of the best online re-

46

Figure 4.1: An illustration of the whole architecture. The current state and

reward are inputs into the architecture. The output of the whole architecture

is the output of an active QCON.

47

Figure 4.2: The simulation with the first two subareas labeled

inforcement learning solution. And the feed-forward artificial neural networks

to generalize the Q-values between similar states. The QCON is addressed to

solve problems with continuous state and discrete actions representation. The

Framework has been successfully used to solve problems in nondeterministic dy-

namic environment and was generally better at learning than other continuous

reinforcement learning frameworks like AHCON [10]. The Framework can be

implemented into two possibles variations. The first one is the version with a

single neural network with the state as input and with multiple outputs. The dis-

advantage of this version is that whenever the single utility network is modified

with respect to an action, no matter whether it is desired or not (reference), the

network is also modified with respect to the other actions as a result of shared

hidden units between actions. The second version, which is used in this thesis,

has a set of neural networks, one network for each discrete action(See Figure

4.3).

48

Figure 4.3: A QCON as proposed by Lin., each action-value is repre-

sented by a feedforward network with one hidden layer that is trained using

back-propagation algorithm and Q-learning. We have four possible actions

a0, a1, a2, a3.

49

Algorithm 4 A QCON learning algorithm version to solve the learn problem

in the Labyrinth of Brio (Based on [10])
Require: Four feedforward networks with the dimension of s as number of

inputs and a single output.

1: repeat

2: s ← current state ;

3: each action ai gets the output of the neural network ANNi : Q(s, ai)

4: Select, using Boltzman distribution, an action ak

5: Execute a ;

6: s’ the new state; r gets reward;

7: Q’ ← r + γ maxaj Q(s′, aj)

8: Adjust the network ANNk, corresponding to the executed action by

backpropagating the error ∆Q through it with input s, where

∆Q = Q′ −Q(s, ak)

9: until Some stopping criterion is satisfied

In Following a special QCON version with the parameters to control the

labyrinth board is presented. The Architecture has the following components :

Input: The Input corresponds to current state s and the current reward r.

s is continuous and should presents all necessary informations to fulfill the

markov property the information. It is defined as a vector of 6 elements :

s=(x, y, Vx, Vy, P1, P2) where :

(x,y) : The ball position on the board

(Vx,Vy) : The ball velocity on the board

(P1,P2): Motor position values

Selection: The selection between actions is stochastic allowing an active

exploration for the learning agent. It follows the boltzman distribution:

P (ai) =
eQ(s,ai)/T∑3

j=0 eQ(s,aj)/T

For i=0,1,2,3. s is the current state and ai are the possible actions. The

50

temperature T adjusts the randomness of action selection

Evaluation: After executing an action ai the learning agent evaluates its

goodness using the update function in Q-learning for calculating the ∆Q:

∆Q(s, ai) = r + γ max
a′∈A(s)

Q(s′, a′)−Q(s, ai)

The Q(s, aj) is the output of the jth neural network given the input s.

The ∆Q(s, ai) is then sended to the ith neural network to be updated.

Note that only the network that is responsible of the executed action is

updated, in this case the ith network.

neural networks Using the multi-networks QCON version, each neural net-

work corresponds to one possible action. In our problem there are 4 pos-

sible actions. The Q-values are presented with feedforward networks with

one hidden layer. The number of units in this hidden layer is denoted

H. The Input of the neural network is the state vector and the output

is the approximated Q-value for a given state and the assigned action.

After an evaluation of an action-state tuple (ai, s) the corresponding net-

work ANNi receives the ∆Q(s, ai) as output error and their weights are

updated using Backpropagation algorithm 1

Output The output is one of the 4 possible actions. In the defined problem

the number is limited to 4 actions. For every motor there are two possible

rotations: turn clockwise or turn anti-clockwise relative to the current

position with an offset value.

4.2 the two holes Problem

The two holes Problem is defined to be analogous to the famous Pole Balancing

Problem, which is a standard benchmark for the design of reinforcement learning

solutions.

The Problem consists of an area on the board surrounded with a wall. Two

Holes are situated in the extremities. And a start position for the ball is defined

in the middle of the region (see figure 4.4). The goal is to avoid the holes through

51

Figure 4.4: An Illustration of the two holes problem

52

balancing the board. Learning this task means learning implicitly the dynam-

ics that control the ball. This problem is used to evaluate, through empirical

experiments, different parameter combinations in the QCON framework.

4.2.1 Actions Representation

Starting with zero position for both motors, if the board does not move at

all then the ball keeps in the centre. Of course the simplest way to solve the

task may be developing a policy that chooses always the action (0,0) which

means does not add any offset to the current motors positions i.e. do not turn

the motors at all. To make the problem more challenging such an action is

not defined. The system has a dynamical behaviour i.e. it keeps always in

movement.

The four Actions defined in this study are:

• a0 = (−0.1, 0.1)

• a1 = (−0.1,−0.1)

• a2 = (0.1, 0.1)

• a3 = (−0.1,−0.1)

The values are in degree, the maximal rotation value is 3 degree and the minimal

is -3 degree. As explained earlier the system has a relative action presentation

which means the value sent to the motors are added to the current motor posi-

tion.

4.2.2 State Representation

The state is continuous and composed from:

• The position of the ball on the board (x, y). The values are returned

from the simulator as real value with the precision 10−4m, The values are

multiplied with 10 and are in the intervals:

x ∈ [−0.800, 0.800] , y ∈ [−0.160, 0.160]

53

• The linear velocity of the ball on the board (Vx, Vy). The values are

returned from the simulator as real value with the precision 10−4m/s,

The values are multiplied with 10 and are in the intervals:

Vx ∈ [−0.900, 0.900] , Vy ∈ [−0.500, 0.500]

• The current position of the motors (P1, P2). The Motor positions are given

in degree and are both in the interval [−3.0, 3.0]

4.2.3 Parameters sensitivity

The QCON framework has a number of design parameters. As mentioned before

we made some restriction about the architecture of the neural networks, which

is defined as fully connected and with one hidden layer. The design parameters

are as follows:

1. Reward function

2. The activation function in neural networks.

3. The number of units in the hidden layer in the neural networks H.

4. The learning rate α.

5. The discount factor γ.

6. The temperature T for the stochastic action selector.

7. Motors Frequency

In order to compare objectively the performances, 20 runs were achieved for

each combination the plots below show the number of trials needed to learn the

task. The standard deviation is also rendered giving an overview of the stability

of the results.

The Discount Facor γ

The discount factor γ ∈ [0, 1] determines the worthiness of the expected rewards

in the future. When γ is close to 0, the agent tries to maximize only the

immediate rewards and there in the future are insignificant. As γ approaches

1, the future rewards are taken into account more strongly. In the two holes

54

Problem the rewards are given only at the end of trials, the value γ=0.8 is used

as default value.

The Reward Function

The reward function determines the goal of the task the intuitive solution in

the two holes problem is to punish the agent, i.e. give a negative reward, if it

fails into a hole. The reward function in this study is given with the function R

where:

• R = -1 if the ball falls in the hole.

• R= 0 otherwise.

The Activation Function

The activation function is a variation of the sigmoid function (as proposed in

[10]):

f(x) = 1/(1 + e−x)− 0.5

The Learning Rate α.

The learning rate α strongly influences performance on standard supervised

learning problems. A learning rate that is too small leads to slow convergence

with high possibility to land in local minima. High learning rates can prevent

convergence because the system repeatedly steps over useful minima.

Figure 4.5 shows the performance with various learning rates, note that the

learning rate is the same for all links in the neural networks.

The relationship between learning rate and performance appears to be the

same as for standard supervised learning. With a small learning rate, smaller

then 0.2, the agent needs more number of trials to learn the task, a high learning

rate, over 0.4, can prevent the convergence and make the learning agent unstable

(see the standard deviation for α = 0.5, and α = 0.7). A good compromise is

the value α = 0.2.

55

Table 4.1: Average number of trials needed to learn the 2 holes Problem over

20 runs using different values of learning rate α

Learning rate Average number Standard deviation

0.01 221,4 43,4

0.1 120,8 33,8

0.2 80,4 30,2

0.25 66,4 44,6

0.3 71,7 40,6

0.4 70,9 55,2

0.5 200,4 150,3

0.7 220,0 260,1

Figure 4.5: Average number of trials needed to learn the 2 holes Problem over

20 runs using different values of learning rate α

56

The Number of Hidden Units H

The number of hidden neurons H determines the complexity of functions that

can be represented by the neural network. If H is very high then the processing

needed is without reason increased and the system can be a subject of overfitting.

A too small number of hidden units can prevent learning at all.

Table 4.2: Average number of trials needed to learn the 2 holes Problem over

20 runs using different numbers of hidden units H

Number of Average number Standard deviation

hidden neurones H of trials needed

2 820 600

3 75,55 43,75

4 77,1 50,22

10 80,40 30,12

20 110,56 40,6

40 105 37.8

As can be seen in Figure 4.6 H=10 appears to be a good compromise with

the smallest standard deviation and a small average number of trials needed

The Temperature T

A simulated annealing 1 approach is used. The Temperature is linearly de-

creased with a factor 0.09 after every trial.

4.3 Experiments

To demonstrate the stability of the learning in a given subarea, a statistical

measurement of the performance of the QCON frameworks in the two first

subareas is presented.

For each study we performed 10 experiments. An experiment consisted of

300 trials, and after each tenth trial the agent played with the learned greedy
1analogous to the annealing in metallurgy, a technique involving heating and controlled

cooling of a material to increase the size of its crystals and reduce their defects.

57

Figure 4.6: Average number of trials needed to learn the 2 holes Problem over

20 runs using different values of number of hidden units H

policy. A trial begins with a random position and terminates when the ball falls

in a hole, or when it attains the subgoal, or when the number of steps is greater

than 600.

We subdivided the labyrinth manually based on a predefined number of holes

on a single subarea. This number is limited to two holes (see Figure 4.4).

The parameters of the experimental setup are these found in the two holes

problem and are summarized in Table 4.3.

4.4 Results

In following the learning’s results on the first two subareas is given. Two sub-

tasks are solved by the agent. The first one is to avoid the holes,and the second

one is to attain a subgoal in a given subarea as fast as possible.

Training’s results in area 1

The plot in Figure 4.7 shows the results in the learn phase on the first area. The

slope in the curve labelled ”Terminal=hole” begins after 50 steps to rise expo-

58

Table 4.3: Parameters of the experimental setup.

Factor Description

State state s=(x, y, Vx, Vy, P1, P2)

(x,y) The ball position on the board

(Vx,Vy) The ball velocity on the board

(P1,P2) Motors position values

Action For every motor there are two possible rotations:

turn clockwise or turn anti-clockwise relative

to the current position in steps of 0.1 deg; there are 4 possibles actions

a0 = (−0.1, 0.1), a1 = (−0.1,−0.1), a2 = (0.1, 0.1), a3(−0.1,−0.1)

Reward -0,5 if in hole; 1 if in subgoal; 0 otherwise

Learning Discount factor λ=0.8; Learning rate α=0.2

Number of hidden units in a QCON net H=10

Actions Stochastic: eQ/TP
eQ/T

selection Simulated annealing T:1 → 0.0002

Study Average over 10 experiments in a single area;

Play after after each 10 trials with greedy policy

Maximum number of steps per play 600

59

nentially towards the maximum number of steps which is 600. The agent needs

on average about 100 trials to learn the policy that permit it to avoids the holes.

The second curve, which is labelled ”Terminal=subgoal”, shows that the agent’s

policy converges towards an optimal and stable solution after approximately 200

trials.

Figure 4.7: Plots of the number of steps versus plays in area 1. One step

corresponds to one action, and every play was performed after 10 trials using

the learned greedy policy. The red curve shows the number of steps needed

before the ball falls in a hole. The green curve shows the the number of steps

needed to reach the defined subgoal

Training’s results in area 2

The results in the area 2 are in correlation with the results in area 1. The agent

needs on average about 120 trials to learn how to avoid holes and about 250

trials to learn an optimal and stable policy.

Playing on the whole labyrinth

Based on the current position of the ball, the selector module selects the appro-

priate learned QCON to be active and sends the output of the QCON to the

60

Figure 4.8: Plots of the number of steps versus plays in area 2. One step

corresponds to one action, and every play was performed after 10 trials using

the learned greedy policy. The red curve (Terminal =hole) shows the number of

steps needed before the ball falls in a hole. The green curve (Terminal =subgoal)

shows the the number of steps needed to reach the defined subgoal

61

actuators. Once trained, a QCON network does not need further adaptation

when playing the game continually from the start point to the final goal in the

whole labyrinth. This result was expected, because of the design of the subdi-

vision and the training. Two subsequent areas, are connected using the subgoal

of the first area as a starting region for the next one. After learning to reach

the subgoal as fast as possible in first area, the agent lands automatically in the

next area in the play phase. In the training phase of the second area the agent

learns to reach the goal starting from different points in the area, furthermore

due to the high exploration in the begin of each run, the agent learns to deal

with a big range of velocity values, hence after that the ball lands in the second

area the assigned trained QCON takes the control without any problem.

The chosen approach has the following advantages:

1. It is easier to achieve a solution with an architecture composed of a com-

mittee of QCONs than a monolithic one.

2. The solution scales up easily as the complexity of the game increases.

The complexity of the architecture (the number of QCONs and the num-

ber of the hidden neurons in each QCON) is directly proportional to the

complexity of the game (number of holes and walls).

62

Chapter 5

Conclusion

5.1 Summary

This thesis presented a connectionist architecture for learning how to play a

simulated ”Brio Labyrinth” game that uses the divide and conquer paradigm

inspired by the way a human player plays the game. The thesis started with the

theory of artificial neural networks (ANN) discussing their advantages as well

as their complexity. It then proceeded to reinforcement learning, which enables

autonomous and situated agents to learn and adapt to the environment. More-

over, the convergence of RL for value iteration was discussed, and it was proven

that the update in value iteration algorithm can be defined as a contraction and

according to Banach theorem it converges with probability 1.

For running the experiments, a physical simulation based on ODE has been

realized. A QCON framework [10] based solution that combines both ap-

proaches, RL and ANN is developed and implemented for learning to play

the game. In the experiments, different variable combinations were explored

in a very simplified problem called the two holes problem. Since the whole

labyrinth is too complex to solve with a monolithic QCON, the divide and con-

quer paradigm was followed and the labyrinth is subdivided into small regions,

where to every region a QCON based architecture is assigned. The best pa-

rameter combination founded in the two holes problem was used to train the

QCONs in the assigned subareas. The experiments on the two first subareas,

63

which were presented in the last chapter, illustrated the stability of the conver-

gence in each area. It was shown that the architecture scales up easily as the

number of subareas increases. The proposed solution was able to play the game

successfully from the start until the the goal point.

A paper [1] on the results of this work is already accepted as poster publi-

cation at the 30th Annual German Conference on Artificial Intelligence (KI07),

2007.

5.2 Outlook

The proposed framework can be transferred to the real labyrinth. A combina-

tion between the simulation and the real labyrinth can be very practical. The

simulation can be used for quantitative training, thereafter just an adaptation

phase will be needed for compensating the difference between the real and sim-

ulated labyrinth. However, the real labyrinth should have the same state and

action representation. The ANNs make the task easier because of their ability

to deal with uncertain data coming from the real sensors. The states can be

generated from potentiometers and an image-processing algorithm.

64

Bibliography

[1] L. Abdenebaoui, E. A. Kirchner, Y. Kassahun, and F. Kirchner. A connec-

tionist architecture for learning to play a simulated brio labyrinth game.

In Proceedings of the 30th Annual German Conference on Artificial Intel-

ligence (KI07), 2007. Accepted.

[2] J. Albus. A new approach to manipulator control: The cerebellar model

ariculation controller (CMAC) (trans. of the ASME, sept. 1975). J. Dyn.

Syst. Meas. & Contr., pages 220–227, 1975.

[3] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

[4] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s

College, 1989.

[5] D. Debanne, G. Daoudal, V. Sourdet, and M. Russier. Brain plasticity and

ion channels. J Physiol Paris, 97(4-6):403–414, 2003.

[6] P. Y. Glorennec. Fuzzy Q-learning and evolutionary strategy for adaptive

fuzzy control. In H. J. Zimmermann, editor, Second European Congress on

Intelligent Techniques and Soft Computing - EUFIT’94, volume 1, pages

35–40, Promenade 9, D-52076 Aachen, Sept. 20-23 1994. Verlag der Au-

gustinus Buchhandlung.

[7] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory.

Wiley, New York, 1949.

[8] R. J. Herrnstein. On the law of effect. Journal of the experimental analysis

of behavior, 13:243–266, 1970.

65

[9] T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag,

Berlin, third edition, 1989. Kohonen, T.

[10] L.-J. Lin. Self-improving reactive agents based on reinforcement learning,

planning and teaching. Machine Learning, 8(3-4):293–321, 1992.

[11] W. S. McCulloch and W. Pitts. A logical calculus of the idea immanent in

nervous activity. Bull. Math. Biophys., 5:115–133, 1943.

[12] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational

Geometry. MIT Press, Cambridge, MA, 1969.

[13] M. L. Minsky. Theory of neural-analog reinforcement systems and its ap-

plication to the brain-model problem. Ph.d. dissertation, Princeton Uni-

versity, 1954.

[14] J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map. prelim-

inary evidence from unit activity in the freely-moving rat. Brain Research,

34(1):171–175, November 1971.

[15] D. Patterson. Kuenstliche neuronale Netze. Prentice Hall,

Mnchen,Germany, second edition, 1996. KNN.

[16] F. Rosenblatt. Principles of neurodynamics: Perceptrons and the theory of

brain mechanisms. Spartan Books, Washington, D.C., 1962.

[17] F. Saito and T. Fukuda. Learning architecture for real robotic systems -

extension of connectionist Q-learning for continuous robot control domain.

In ICRA, pages 27–32, 1994.

[18] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210–229, 1959.

[19] J. C. Santamar’ia, R. S. Sutton, and A. Ram. Experiments with rein-

forcement learning in problems with continuous state and action spaces.

Technical report, Feb. 01 1998.

[20] S. Sehad and C. Touzet. Self-organizing map for reinforcement learning:

obstacle-avoidance with Khepera. In P. Gaussier and J. D. Nicoud, edi-

tors, Proceedings. From Perception to Action Conference, pages 420–3, Los

66

Alamitos, CA, USA, 1994. LERI-EERIE, Nimes, France, IEEE Computer

Society Press.

[21] S.-H. Shi, Y. Hayashi, R. S. Petralia, S. H. Zaman, R. J. Wenthold,

K. Svoboda, and R. Malinow. Rapid Spine Delivery and Redistribution

of AMPA Receptors After Synaptic NMDA Receptor Activation. Science,

284(5421):1811–1816, 1999.

[22] W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in

continuous spaces. In Proc. 17th International Conf. on Machine Learning,

pages 903–910. Morgan Kaufmann, San Francisco, CA, 2000.

[23] R. Smith. Open dynamics engine, www.ode.org, 2005.

[24] Y. Takahashi, M. Takeda, and M. Asada. Continuous valued q-learning

for vision-guided behavior acquisition. In Proc. of 1999 IEEE/SICE/RSJ

International Conference on Multisensor Fusion and Integration for Intel-

ligent Systems, pages 255–260, 1999.

[25] E. L. Thorndike. The law of effect. American Journal of Psychology,

39:212–222, 1927.

[26] C. F. Touzet. Neural reinforcement learning for behaviour synthesis.

Robotics and Autonomous Systems, 22(3–4):251–81, 1997.

[27] C. J. C. H. Watkins and P. Dayan. Technical note Q-learning. Machine

Learning, 8:279, 1992.

[28] M. A. Wilson and B. L. McNaughton. Dynamics of the hippocampal en-

semble code for space. Science, 261(5124):1055–1058, August 1993.

[29] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

67

	Introduction
	Structure of the Thesis

	 The Simulated Game
	Open Dynamics Engine
	The Editor

	Theoretical background
	Artificial Neural Networks
	Historical Background
	Biological Model
	Artificial Neural Networks
	The Backpropagation Algorithm
	Summary

	Reinforcement Learning
	Introduction
	Markov Decision Processes
	Value Function
	Optimality
	Value iteration algorithm
	Q-learning
	Exploration versus Exploitation
	Summary

	Continuous Q-learning
	Existing Approaches
	Summary

	Convergence in Reinforcement Learning
	Convergence of Value-Iteration in Discrete RL.
	Convergence in Continuous RL

	The Learning Architecture
	The Continuous Q-learning Framework QCON
	the two holes Problem
	Actions Representation
	State Representation
	Parameters sensitivity

	Experiments
	Results

	Conclusion
	Summary
	Outlook

