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Abstract—In this paper, we present a concept for a new kind of
man-machine interface that is based on the monitoring of brain
activity and aimed at supporting operators in telemanipulation
scenarios. This monitoring that takes place unnoticed by the
subject and is called brain reading. A brain reading interface
(BRI) is a highly integrated control environment that observes
brain signals in real time. Consciously recognized and classified
stimuli evoke a certain response in the operator’s brain activity
that will be detected by the BRI. Based on the detection of
these changes in brain responses in the electroencephalogram
(EEG), a brain reading system is able to discern whether a
piece of information that has been presented to the operator was
acknowledged or not. Hence, the BRI ensures that environmental
alerts are processed and classified by the operator and can thus
be a crucial component of control systems ensuring that operators
perceive and cognitively process alerts presented to them during
highly demanding tasks like complex manipulations. We show
that brain activity changes that correlate with the classification of
important, task-relevant stimuli in multi-task telemanipulation-
like scenarios are stable. Furthermore, we outline a concept for
a BR system that allows the detection of these brain activity
changes in single trial EEG epochs based on machine-learning
methods.

I. INTRODUCTION

In many situations it is highly desirable for a machine to
have information about the current (mental) state of its user in
order to choose proper actions. In highly demanding situations,
like space exploration, it is common to monitor subjects by
recording and analysing their body signal data, such as ECG
(electrocardiogram), pulse or GSR (galvanic skin response)
that can be evaluated to measure stress level and exhaustion
[5]. Furthermore, analysis of brain data can be applied to ob-
tain insight into mental states. Electroencephalography (EEG)
is a favored method to observe brain activity since it combines
good time resolution and a sufficient spatial resolution without
the need to implant artifacts like electrode arrays invasively
under the skull. Several event-related potentials (ERPs) as well
as changes in brain wave frequency bands and activity patterns
are known to be coupled with mental or cognitive states or
state changes. A well-investigated ERP is the so-called P300
[31]. The P300 (details in section II-A) is a positive fluctuation
in the EEG, evoked by infrequent, important (task-relevant)
stimuli that are attended, recognized, and cognitively evaluated

by the subject. Thus, P300 can be used as a marker for
successful information processing.

In many telemanipulation scenarios1 it is of interest to know
whether the operator perceived and understood important
information (e.g. warnings or certain task-relevant messages).
At the same time, the operator has to work highly concentrated
without becoming distracted by repeated presentations of the
same warning that he deliberately ignores. Our approach is
to monitor the operator’s EEG in order to detect changes
or evoked activity like the P300 potential that indicate the
processing and classification of an important, task-relevant
stimulus (like a warning). This passive monitoring is called
brain reading (BR). BR denotes the external observation of
brain activity (e.g. by means of EEG) without the active
participation of the subject. Thus, BR can take place fully
unnoticed by the user.

Unlike BR, classical Brain-Computer Interfaces (BCI) are
used to control a machine, computer or prostheses [35] via the
brain and need the user’s attention. Even though this control
can be learned by the subject and by thus turned into a highly
automated behavior, it will still use cognitive resources of
the operator and because of this does not improve a situation
where an operator is already under a high level of workload.
In contrast, BR can be the method of choice to monitor the
operator’s brain signals in real-time to ensure that environmen-
tal alerts have been consciously processed by the operator.
Since the operator will not be aware of this monitoring, he
will be able to concentrate on the task, e.g. telemanipulating a
complex robot. A further difference to typical BCI systems is
that due to the real-time constraints, processing of brain pat-
terns has to be done based on the individual EEG epochs (so-
called “single-trial” analysis) instead of an average of several
EEG epochs that have been obtained under similar conditions
like in most BCIs (e.g. P300-based spellers [30]). Average
analysis is easier because averaging increases the signal-to-
noise2 ratio since the noise in the individual EEG epochs is not

1e.g. the remote control of a robotic arm of an underwater vehicle by a
human operator situated in a control center of a submarine or marine ship.

2We refer to the relevant potential as the “signal” and to all other brain
activities and environmental influences as “noise”.



correlated and largely cancelled out by averaging. In contrast,
single-trial analysis must deal with low signal-to-noise ratios
since the relevant information is typically significantly weaker
than background activity and noise. One increasingly popular
approach to single-trial analysis of EEG data is the adoption of
(supervised) machine-learning techniques [22]. In this setting
a short calibration session in which “typical” EEG epochs are
recorded from a subject under the respective conditions, the
machine is able to adapt to individual brain patterns of the user
(in contrast, many classical BCIs require the user to adapt their
brain waves so that they are understandable by the machine).

In this paper, we outline a concept for applying single-trial
analysis of EEG data in a brain reading scenario, namely for
monitoring and supporting operators, and thus not for a direct
BCI control (see [22] for examples of both approaches). We
believe that brain reading can be especially useful in scenarios
where operators telemanipulate complex robotic systems. To
investigate EEG potentials in a scenario that exhibits many of
the characteristics of brain reading in a real-world telemanip-
ulation scenario, we set up a test bed (called “Brio oddball
scenario”) that requires elevated levels of concentration, fine
motor control as well as response to presented information.
We show that certain brain potentials are elicited after the
cognitive processing of important information (see Section
II), showing the principle feasibility of single-trial analysis
in such a scenario. Thereupon, we outline a concept and a
software framework for real-time single-trial brain reading (see
Section III).

II. PARADIGM AND EEG OFFLINE ANALYSIS

A. P300 Under Cognitive Load

In our experimental setup, the P300 potential and accom-
panying changes in brain activity (e.g. changes in frequency)
will be investigated regarding their usability in a BRI. This
paper will focus on the P3b potential [31], [34] (further
called P300) which is evoked by task-relevant stimuli to
answer the question whether task-relevant information was
processed and classified in a manipulation scenario. P300 is
a well-known and thoroughly studied potential. On the one
hand this potential is stable and strong, allowing its use in
classic BCI applications [6], [2], on the other hand, peak
latency of the P300 will shift regarding the complexity of
the cognitive task to evaluate stimulus task relevance [18],
and the amplitude is sensitive regarding the subjective rarity,
importance and unambiguousness of the stimulus [16]. Besides
this, the magnitude of the P300 amplitude also depends on
whether subjects devote high amounts of effort to the task
[14].

Subsequently, we present an offline analysis of EEG data
recorded under two different experimental conditions, where
subjects have to solve one task in one scenario (simple oddball)
or two different tasks in the other scenario (Brio oddball).
We focus on P300 stability (changes in peak amplitude)
and latency shifts due to the different complexity of both
experimental setups.

Fig. 1. Experimental setup: Subject is playing BRIO R© and is reacting to
rare target stimuli (alerts) by pressing a buzzer. The table shows type and
number of presented stimuli within one experimental run.

B. Manipulation-Like Scenario - Brio Oddball

To analyse P300 in a manipulation-like scenario we set up
a test bed, the “Brio oddball scenario”, to be able to record
data in a rather controlled environment. The test bed allows
to investigate how an operator’s EEG changes in response to
visually presented warnings while performing a manipulation
task that requires elevated levels of concentration and fine
motor control. The manipulation task of the subject is to play a
BRIO R© labyrinth game with the goal to manoeuvre a ceramic
ball from a starting point along a partly bordered, marked
path to the target position by tipping the board so that the ball
rolls without falling into any of the holes. Detailed information
about the test bed can be found in [21].

In Brio oddball, subjects were asked to play the labyrinth
game as well as possible (contest situation) and at the same
time they had to react to target stimuli presented on a monitor
by pressing a buzzer (see Figure 1). In simple oddball, subjects
only reacted to the same stimuli without playing the game.
Infrequent warnings (deviant stimuli) appeared one or several
trials before a target to warn the subject of incoming target
stimuli. Both rare stimuli types were randomly presented
within the sequence of frequent, task non-relevant standard
stimuli. This setup is called oddball discrimination paradigm
[28], [26], [25]. The interstimulus interval (ISI) varied between
600 and 800 ms. Number of stimuli are listed in Figure 1.

To investigate whether high cognitive load in Brio oddball
influences the latency, amplitude, and stability of the P300
potential, we compared Brio oddball data with data recorded in
a standard oddball paradigm (simple oddball), where subjects
only reacted toward stimuli in the same experimental setup
without playing the game and only focused on the monitor.

C. EEG Offline Average Analysis

1) Method of offline data analysis:
a) subjects: Eight undergraduate and graduate students

(two female and six male; age from 19 to 29 with mean age



of 24.38 (±4,033) participated. All subjects were right-handed
and had normal or corrected-to-normal vision. Declaration of
consent in writing was obtained from each participant.

b) task: All subjects (except for one subject) performed
two experiments (simple and Brio oddball) at the same day.
One subject attended on two different days. All subjects en-
tered the simple oddball experiment first. Experimental setup
is explained in II-B.

c) data acquisition: EEGs were recorded continuously
from 64 electrodes (extended 10-20 system with reference
at FCz), using an actiCap system (Brain Products GmbH,
Munich, Germany). EEG signals were amplified by two 32
channel BrainAmp DC amplifiers (Brain Products GmbH,
Munich, Germany) and filtered with a low cutoff of 0.1 Hz and
high cutoff of 1000 Hz. EEGs were sampled at 2500 Hz. The
impedance was kept below 5 kΩ. EEGs were analyzed off-
line with BrainVision Analyser Software Version 2.0 (Brain
Products GmbH, Munich, Germany). EEGs were off-line re-
referenced to an average reference and filtered (0.2 Hz low
cutoff, 45 Hz high cutoff). Artifacts (e.g. eye movement,
blinks, muscle artifacts, etc.) were rejected semi-manually
(amplitude 100/-100 µV, gradient 75 µV). EEGs were off-line
segmented into epochs from 100 ms before stimulus onset to
1000 ms after stimulus onset. Epochs were averaged based
on trial events. Baseline correction was performed before
averaging (pre-stimulus interval: -100 to 0 ms).

2) Results of offline analysis:
a) Behavioral data: For statistical analysis, one-way

ANOVA (SPSS, version 16, SPSS Inc., Chicago, IL, USA) was
applied to response time (RT), with one factor: scenario type
(simple oddball, Brio oddball). We found an effect of scenario
type [F (1, 14) = 39.49, p < 0.001], reflecting a different RT
between simple oddball and Brio oddball. Subjects responded
to targets faster in the simple oddball scenario [median of RT:
496 ms] compared to the Brio oddball scenario [median of RT:
720 ms]. Concerning response accuracy, we also performed
one-way ANOVA with one factor: scenario type (simple
oddball, Brio oddball). We found an effect of scenario type
[F (1, 14) = 6.552, p < 0.024], reflecting a different response
accuracy between simple oddball and Brio oddball. Subjects
responded more accurately in the simple oddball scenario
[median of response accuracy: 100%] compared to the Brio
oddball scenario [median of response accuracy: 91.66%].

b) EEG/ERP data: For statistical analysis, two separate
time windows were applied to the ERP data for amplitude
and latency: 350-600 ms and 600-850 ms. We performed
repeated measures ANOVA with two within-subjects factors:
a) stimulus type (three levels: standard, deviant, target) and
b) time windows (two levels: early time window, late time
window). The scenario type (two levels: simple oddball,
Brio oddball) was computed as a between-subject factor.
Greenhouse-Geisser correction was applied and the corrected
p-value was reported. For pairwise comparisons, Bonferroni
correction was applied.

For P300 amplitude, we found a main effect of stimulus
type [F (2, 28) = 33.02, p < 0.001], reflecting a significant

amplitude difference between standards and targets (i.e. P300
effect in the target condition) as well as standards and deviants
(i.e. P300 effect in the deviant condition). There was a main
effect of time window [F (1, 14) = 20.04, p < 0.002],
reflecting a significant amplitude difference between the early
and the late time window. The time window interacted with
the scenario type [F (1, 14) = 9.94, p < 0.008]. Pairwise
comparisons revealed a significant amplitude difference be-
tween the early and the late time window in simple oddball [p
< 0.001], but not in Brio oddball [p = n.s.]. We found that
a stronger P300 effect in the early time window compared to
the late time window was observed only in simple oddball. In
contrast, we found a broader P300 peak in Brio oddball. We
found no interaction between stimulus type, time window and
scenario type. Pairwise comparisons revealed the following
three findings: First, we found a P300 effect in the target
condition for each time window as well as for each scenario
type [simple oddball: p < 0.001 for the early time window, p
< 0.035 for the late time window; Brio oddball: p < 0.001 for
the early time window, p < 0.002 for the late time window].
However, we found a P300 effect in the deviant condition for
each time window only in simple oddball [early time window:
p < 0.001, late time window: p < 0.021]. In the Brio oddball
condition, the P300 effect in the early time window was absent,
even though we found a P300 effect in the late time window
[early time window: p = n.s., late time window: p < 0.019].
Secondly, we found a stronger P300 effect in the early time
window compared to the late time window. The stronger P300
effect in the early time window could be shown for both
stimulus conditions in simple oddball [targets: p < 0.003;
deviants: p < 0.002]. In Brio oddball, P300 in the early time
window was just as strong as in the late time window for the
target condition. Third, we found a scenario-specific difference
that could only be shown in the early time window for the
deviant condition.[p < 0.026]

Concerning P300 peak latency, there was no main effect of
stimulus type [F (2, 28) = 2.433, p = n.s.] as well as scenario
type [F (2, 28) = 3.139, p = n.s.]. The stimulus type did
not interact with the scenario type [F (2, 28) = 3.139, p =
n.s.]. Not surprisingly, there was a main effect of time window
[F (1, 14) = 195.156, p < 0.001]. The time window did not
interact with the scenario type [F (1, 14) = 0.399, p = n.s.]
nor with the stimulus type [F (2, 28) = 1.0, p = n.s.]. There
was no interaction between stimulus type, scenario type, and
time window. Pairwise comparisons revealed that there was a
latency difference between simple oddball and Brio oddball in
the early time window of target condition [p < 0.007]. There
was also a latency difference between target and deviant in
Brio oddball [p < 0.044].

In summary, in the simple oddball scenario, we found a
P300 effect elicited by targets as well as a reduced P300 effect
elicited by deviants. In the Brio oddball scenario, we found
a P300 effect with an extended peak latency in the target
condition, whereas a P300 effect was absent in the deviant
condition within the early time window. Also we found a
delayed peak latency of P300 in Brio oddball compared to



a)

b)

Fig. 2. Grand averages over 8 data sets each scenario (2a: simple
oddball scenario; 2b: Brio oddball scenario); [artifact-free segments [stan-
dards/deviants/targets (hits)]: simple oddball [48%/54%/52%], Brio oddball
[45%/47%/32%]

simple oddball, when we concern the early time window.
3) Discussion of offline data analysis: In our discussion we

will focus on four main findings in the early time window:
(1) the stable P300 in the manipulation-like scenario, (2) the
delayed peak latency of P300, (3) the broader P300 after
targets in the early time window in the Brio oddball scenario
in comparison to P300 elicited by targets in the simple oddball
scenario, and (4) the missing P300 after deviants in the Brio
oddball scenario.

One of our main findings is a stable P300 in the Brio
oddball scenario. There was no significant reduction in P300
amplitude due to the dual task. Thus, P300 is a stable measure
for information processing in a manipulation-like scenario.
Similar results could be shown by Fowler at al. [8].

However, we found a delayed peak latency of P300 in the
Brio oddball scenario compared to the simple oddball scenario
(see Fig 2a vs. Fig 2b). The Brio oddball scenario makes
higher demands on the subject’s cognitive processing, since the
subject has to pay attention to two tasks, motor response after
successful perception and classification of targets and playing
the BRIO R© labyrinth game, which require different cognitive
procedures. Both tasks involve stimulus processing of the same
modality, namely visual processing. Thus, cognitive resources

have to be shared. Selective attentional processes are involved
in generating a P300. Since motor response after correctly
classified target stimuli as well as playing the game involve
selective attentional processes, both tasks compete for the
same cognitive resources involved to direct attention. This in
turn makes stimulus evaluation more difficult and complex and
results in a delay of stimulus classification in the Brio oddball
scenario reflected in a delayed P300 [8], [18], [11].

The finding of a broad P300 elicited by targets in the
Brio oddball scenario (see Fig 2b) can be interpreted in three
ways. First, we could see stronger inter-subject differences in
P300 latency in the Brio oddball scenario than in the simple
oddball scenario, which causes a broader morphology of the
grand averaged P300 in the Brio oddball scenario. Those inter-
subject differences might result from the demand that subjects
had to manage a conflict situation of solving two possible
tasks at the same time (playing the BRIO R© labyrinth game
and pressing the buzzer). Each subject might solve this conflict
situation in different ways. We noticed that subjects that played
the labyrinth very well and concentrated had more problems
to focus on the oddball task. Second, playing the BRIO R©

labyrinth game can be different at any individual trial3, (more
or less complicated) and the subject might thus at any time
play more or less concentratedly. The more difficult a situation
in the game is, the more a subject is distracted from paying
attention to the oddball task. This might in turn influence P300
peak latency in every single trial P300. Inter-trial differences in
P300 single trial peak latency can result in a broader averaged
P300 potential for each subject [20]. Third, though a flat grand
average curve can be caused by latency differences between
averaged P300 from individual subjects as well as differences
between single trials within subjects, it can also result from
overlapping potentials [19], e.g. P300 overlapping with a slow
wave potential [32].

The higher cognitive load in the Brio oddball scenario
resulting from the dual task might also be a reason for the
absence of a P300 effect in the deviant condition in the early
time window of the Brio oddball scenario (see Fig 2b). Our
results indicate that the deviants were ignored, i.e. no longer
perceived as warnings. This finding is consistent with the P300
pattern of the deviant condition in the simple oddball scenario
which is characterized by a stronger P300 effect of deviants
compared to the Brio oddball scenario (see Fig 2a). This
can be explained with the quality of P300 to be associated
with the information processing of the task-relevant stimuli.
In our case, target stimuli are task-relevant and thus targets
elicit the stable P300 effect irrespective of the experimental
scenario type. In contrast, the occurrence of P300 elicited
by deviants depends on whether deviants are perceived as
warning, i.e. as task-relevant stimuli. Since in the Brio oddball
scenario attention was divided and cognitive load was much
higher than in the simple oddball scenario, subjects ignored the
deviant stimuli which were not necessarily task-relevant. This

3Trial stands for every single EEG epoch time-locked to a certain event,
that evoke brain activity.



is because they predicted the occurrence of a target stimulus
not reliably but only weakly4. In contrast to the simple oddball
scenario, subjects were not able to keep enhanced attention
on the oddball task after the occurrence of a deviant stimulus
and in anticipation of a target stimulus since they were forced
to play the game and thus were distracted from keeping their
attention on the oddball task. Our findings confirm results from
Israel et al. [15].

In summary, we could show that the P300 potential is
elicited after task-relevant stimuli in a stable manner and is
reduced or absent for rare but non task-relevant stimuli. Also,
we found that in a scenario that requires complex manipulation
and multiple tasking, only stimuli that are very important,
task-relevant and cognitively processed elicit a P300 potential.
Based on both findings, we presume that P300 is a good
indicator for cognitive processing in multitasking scenarios.
Regarding the broader P300 morphology in Brio oddball, we
assume that there are two possible reasons: different P300 la-
tencies at the level of single trials and inter-subjects differences
in P300 latency at the level of averages. An approach for single
trial ERP detection has to be robust to inter-trial and inter-
subject variances, which can be achieved by using appropriate
feature generation techniques (see section III-A3).

III. SINGLE-TRIAL BRAIN READING

A. Concept

In this section, we present a concept for single-trial classifi-
cation of an operator’s information processing in a telemanip-
ulation scenario. More precisely, in this scenario the single-
trial brain reading device has to make a decision whether an
operator did perceive an important message or whether he
did not. For such a system, we have identified the following
steps for processing: (1) Subdividing the continuous EEG
into fixed-length time windows (windowing), (2) increasing
the signal-to-noise ratio (preprocessing), (3) extracting stable
features from the EEG time windows (feature generation),
and (4) deciding whether the one or the other condition was
present based on the extracted features (classification). Due
to the large inter-subject (and inter-session) variance, feature
generation and classification (and partly preprocessing) should
be adapted to the specific subject for each session. This can
be achieved by a separate calibration session prior to each
actual session, in which some representative examples under
the different conditions are recorded (see Section III-B). Based
on these training data, machine learning techniques can be
applied in order to detect promising features and to learn good
classification strategies.

1) Windowing: For each message presented, exactly one
decision has to be made. All information that can be used for
this decision is usually contained in a certain, fixed time-range
around the message presentation. Thus, the decision can be
based solely on the EEG recorded in the second after message
presentation. The process of extracting this time window is

4A deviant stimulus occurred one or several trials before each target
stimulus.

called “windowing”. Windowing simplifies computation since
it allows to work always on instances of the same shape (length
of the signal frame).

2) Preprocessing: Preprocessing refers to operations aimed
at increasing the signal-to-noise ratio. It requires some assump-
tions on which components of the time window are considered
useful and which are considered as noise. For example, high
frequency noise can be removed through a low-pass filter.
Another preprocessing method is spatial filtering, which refers
to methods that combine information of several channels and
create a new (usually smaller) set of pseudo channels. The
objective is to create channels that contain a high signal
content while the noise is more concentrated in the remaining
channels.

3) Feature generation: Finding features that are not
strongly influenced by inter-trial and inter-session variances
is important since it increases the probability that a classifier
trained on these features achieves a good performance also un-
der conditions that have not been tested during the calibration
phase. Possible kinds of features are the power of a certain
frequency band in a certain channel, the correlation of two
channels within a certain time bin, or the voltage of a channel
at a certain point in time. Our approach is to generate a large
set of features (in the order of 103 to 104 features) and to use
supervised feature selection methods (see for example Guyon
and Elisseeff [10] for an overview) to identify subject-specific
features that have a high discriminative power regarding the
two classes. Supervised feature selection methods require
labeled examples that can be obtained during the calibration
session. In order to find not only predictive but also stable
features (i.e. features that have high predictive power over
a broad range of problems), the feature selection can be
performed on different subsets of the whole calibration data
set (or from different calibration sessions). Features that are
selected in a high percentage of the subsets are likely to be
stable. Studying feature stability is of special importance in
the light of identifying new feature generation methods that
are well-suited to handle inter-trial variances due to varying
latencies of P300 components and correlated brain activity
changes.

4) Classification: Based on the extracted features, a
subject-specific classification strategy needs to be derived.
Given the windowed data along with their respective labels
from the calibration session, any kind of classification algo-
rithm suited for binary decision tasks can be used to learn a
user-specific classification strategy. We plan to systematically
evaluate which combination of features and classification
algorithms maximizes the predictive performance over a broad
range of subjects.

B. Calibration

Calibration refers to the process of collecting representative
example recordings of an operator’s brain activity along with
label information indicating the conditions a classifier should
predict later. These training data should cover different situa-
tions that are likely to occur during usage. For example, in a



telemanipulation scenario, operators should actually manipu-
late something during the calibration, they should be situated
in the same environment, and they could be put under time
pressure. During the calibration session, we ask subjects to
press a buzzer to obtain the information if a presented stimulus
has been perceived.

C. Software

In this section, we describe the software framework that has
been developed in order to implement the concept outlined
above. This framework consists of two main parts: an EEG
acquisition infrastructure and a data processing part called
Brain Reading Interface - Data Processing (BRI-DP). See
Figure 3 for a dataflow diagram of software framework.

The EEG acquisition infrastructure is designed so that
(1) it is suited for both online processing of EEG data
and offline benchmarking of signal processing and machine
learning methods, (2) EEG acquisition and processing can
take place on two different machines, and (3) it is real-time
capable. The first requirement is fulfilled by a component that
provides a common interface to access EEG data. Internally,
this component can read these data from a file or acquire
it online from a subject. The second requirement is fulfilled
through a TCP-based communication interface that allows to
stream EEG data from the machine where it is acquired/stored
to the machine where it is actually processed. Sending of EEG
is done by the BRI EEG data protocol server and receiving
by the BRI EEG data protocol client. The third requirement
will be achieved by parallel processing of whole windows or
of the individual channels on multiprocessor and/or graphics
processing unit (GPU) based architectures. Furthermore, the
EEG acquisition infrastructure is also responsible for subdi-
viding the data into windows of fixed length. This windower
component can be configured by means of a configuration
file in which rules are defined that specify when to extract
a window. For instance, whenever an important message is
issued to the operator, a marker is inserted into the EEG. A
typical rule for the windower would be to extract the 1 second
of EEG that follows such a marker.

The BRI-DP is based on the Modular toolkit for Data Pro-
cessing (MDP) [36]. MDP allows to specify a data processing
procedure by means of a data flow, in which every processing
step is modelled as a node. A sequence of nodes constitutes
a (data-)flow. This allows to easily ”plug together” different
algorithms and to exchange one component of a flow by
another in order to compare their relative performance. This
is particularly useful for the empirical comparison of different
preprocessing, feature selection, and classification methods.
The MDP toolkit already offers a variety of signal processing
and machine learning algorithms, e.g. the spatial filtering meth-
ods Independent Component Analysis (ICA) [13], Principal
Component Analysis (PCA) [17], and the classification method
Linear Discriminant Analysis [3]. These data processing units
can be combined into data processing flows and also more
complex feed-forward network architectures. BRI-DP extends
MDP in two ways: on the one hand, further algorithms have

been added like low-pass and band-pass filters, the Common
Spatial Patterns (CSP) algorithms (see for example Blankertz
et al. [4]), and several feature extraction methods based on
properties like frequency band power, amplitudes, and the
pairwise correlation and coherence of channels. On the other
hand, the semantics of flows has been changed slightly so
that cross validation is supported, intermediate results can be
stored and loaded, and that BRI-DP flows can be specified by
means of a configuration file. Furthermore, BRI-DP can be
easily integrated into benchmarking frameworks.

D. Evaluation

The signal frames that are extracted from the continuous
EEG data stream during windowing are preprocessed and
presented to the classification algorithm after the treated signal
has been transformed into a feature representation. Frames are
extracted from the stream following the occurrence of a marker
that signals the presentation of a message to the subject.
During the calibration phase, the subject presses a buzzer to
acknowledge perception of a message (see section II-B). The
buzzer press event is recorded as a second marker type in
the EEG stream and extracted windows are labeled according
to the existence of such a buzzer press event following pre-
sentation of informational messages. As such, each extracted
signal frame constitutes a labeled instance (example) used to
train the machine learning algorithm during the training phase.
During the usage phase, the classification algorithm is asked
to assign a class label (“message was perceived” vs. “message
was not perceived”) or corresponding probability estimate to
each unlabeled signal frame after it has been subjected to the
same preprocessing and feature extraction treatment as frames
during the training phase.

The windowing-based approach adopted here lends itself to
the use of classical instance-based performance metrics that
are long established in machine learning. When evaluating pre-
processing and feature extraction methods in combination with
a classification algorithm on test data, a confusion matrix can
be calculated showing the frequencies of true and false positive
(TP, FP) and true and false negative (TN, FN) predictions
on the test data. A very simple performance estimate is the
accuracy which denotes the total fraction of correct predictions
(acc = TP+TN

P+N ). Accuracy, however, is not an adequate
performance measure in applications with imbalanced classes.
For example, in the scenario presented in section II-B, 720
standard messages versus only 60 target messages (relevant in-
formation) are shown to the user. A trivial classifier that needs
no training and always predicts the majority class (standards)
would yield an accuracy of 92.3% on these data, which clearly
does not give a useful estimate of the actual performance
in the application. Measures from information retrieval, such
as precision (pre = TP

TP+FP) and recall (rec = TP
P ) are

much more suited to the application at hand. We define the
positive class to consist of those signal frames recorded from
an individual that has just consciously perceived a presented
message. Then precision gives an intuitive measure of how
many of the messages that are predicted by the BR system
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have been perceived by the user have indeed been consciously
processed. Naturally, one would aim to optimize this measure
for certain applications where a (possibly critical) piece of
information that was wrongly classified is not brought to the
attention of the user for a second time and thus lost. Recall, on
the other hand, gives an estimate of the number of consciously
perceived messages that have not been classified as such.
For uncritical warnings, it might be sensible to optimize this
metric to avoid disturbing the operator by a repeated display
of warning messages until the classifier has finally recognized
the operator’s conscious processing of the information.

There is a trade-off between precision and recall that can be
made by choosing a threshold when mapping class probability
estimates (if the chosen classifier outputs these) to nominal
classes or selecting classification algorithms that perform
particularly well in either dimension. This trade-off can be
visualized by ROC plots [7]. Precision and recall can also be
combined into a single value called F-measure [33].

The goal of benchmarking is not only to evaluate the perfor-
mance of different methods in isolation, but also to determine
which method performs best [12]. We adopt an exploratory
benchmarking strategy to identify the best-performing prepro-
cessing and machine learning workflows for our application
using an automated benchmarking process in conjunction with
grid computing. To this end we perform a large number of
benchmarking experiments to compare different methods on
a set of EEG data from usually one or several individuals.
Due to the nature of the problem, individual benchmarking ex-
periments are not statistically independent, hence, the correct
choice of appropriate test statistics gains special importance
to ensure that winner methods identified during automatic
benchmarking perform equally well in the real-world appli-
cation [24], [29].

IV. OUTLOOK

In the future, we will focus on the acquisition of EEG
data from subjects that are situated in virtual environments
since telemanipulation can be more effective by placing an
operator in a virtual environment to allow telepresence [9], [1].
Such a scenario imposes additional challenges; for instance,
devices that are needed to situate the subject in the virtual
reality like headsets might cause artifacts in the EEG (e.g.
50 Hz or muscle artifacts due to the extra load of wearing a
heavy headset). We will investigate how a single-trial brain
reading system can deal with this kind of noise. Beside this,
subjects might behave differently in a virtual environment than
in reality and might be under even greater cognitive load
since they might be confused by artifacts of the simulation
environment, i.e., situations where the simulation behaves
slightly different than the reality.

Furthermore, we will examine not only ERP signals but
also correlated changes in different EEG frequency bands
and the sources of ERP signals in the brain. Besides ERPs
that are evoked by the processing of information, ERPs that
precede motor behavior as well as ERPs that are correlated
with attentional processes will be investigated. We will analyze
whether the combination of the monitoring of different cogni-
tive processes could potentially lead to more precise prognoses
of future behaviour of the operator. Both, motor-related ERPs
and attention-related ERPs can give further insights into the
planning and execution of behaviour. This is valuable for both
monitoring of operators in telemanipulation scenarios and in
other complex scenarios that involve the direct control of
machines or devices via parts of the human body, like the
control of a robotic manipulation arm via an exoskeleton.

For single-trial analysis, the choice of appropriate features
is crucial for a good predictive performance of a classifier. We
will investigate which kind of features are stable, i.e. contain a
high information content across sessions and subjects. Besides



the inter-trial variance, during a session there might also be
systematic changes in the operator’s information processing.
For instance, in a telemanipulation scenario, an operator might
fatigue over time. This in turn might increase the latency and
decrease the amplitude of the P300 potential after presentation
of an important message [23]. Because of this, a brain reading
system has to adapt over time to these changes. Online
adaptation will be a focus of further work.

Furthermore, we will conduct studies that compare the
influence of different spatial filtering and classification al-
gorithms on the performance. Based on the results of these
offline studies, an online system will be developed that is able
to classify in real-time whether an operator has consciously
perceived a message. This brain reading system will be tested
in a real-world telemanipulation scenario. In the long run, the
processing must be implemented on portable hardware (like
FPGAs) to increase the usability of the system and reduce
energy consumption. This, together with the recent progress
in the development of drycaps [27] promises that in the future
EEG recordings might be used in application scenarios without
the need of time-consuming preparations of EEG electrodes
and restrictions due to high cost and bulky analysis hardware.
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patients with temporo-parietal lesions. Brain research Cognitive brain
research, 2(2):103–16, Sep 1994.

[35] JR Wolpaw, N Birbaumer, DJ McFarland, G Pfurtscheller, and
TM Vaughan. Brain-computer interfaces for communication and control.
Clin Neurophysiol, 113(6):767–91, Jan 2002.

[36] T Zito, N Wilbert, L Wiskott, and P Berkes. Modular toolkit for data
processing (MDP): a python data processing framework. Frontiers in
Neuroinformatics, 2:8, 2008. PMID: 19169361.


