Phytophthora infestans

Development of an image based detection system for monitoring areas of potato cultivation for an early detection of Phytophthora infestans deseases

Data acquisition with a drone (microdrones MD4-1000 equipped with MicaSense RedEdge) (Photo: Kai Winkel, ARGUS monitoring)
Data acquisition with a drone (microdrones MD4-1000 equipped with MicaSense RedEdge) (Photo: Kai Winkel, ARGUS monitoring)

The cultivation of potato plants is an important factor for food supply in Germany and in many other countries. The potato blight (Phytophthora infestans) is the most relevant threat for the potato cultivation areas worldwide. This annually occurring disease could destroy large parts or even the entire harvest. Dramatic effects, like the hunger crisis in the late 40s of the 19th century, can nowadays be avoided. However, the necessary amount of fungicides pollutes the environment and it is a cost factor for the farmer. The cultivation surveillance system developed in this project will help to optimize the usage of fungicides and therefore, reducing the necessary amount of fungicides by up to 45% and also the required costs.

Duration: 14.07.2017 till 30.06.2019
Donee: DFKI GmbH
Sponsor:
Grant number: This project is funded with federal funds of the Federal Ministry of Economic Affairs and Energy (BMWi) in accordance with the parliamentary resolution of the German Parliament, grant no. ZF4235505GR7
Partner: ARGUS monitoring
Team: Team VII - Sustained Interaction & Learning
Application Field: Agricultural Robotics
Federal Ministry for Economic Affairs and Energy
AiF Projekt GmbH

Project details

The Phytophthora infestans is the germ of the potato blight, the most relevant fungal disease of potatoes that causes worldwide harvest losses of about 20 percent. A single affected plant can Infect up to 500,000 square meters of a field within a few days. It is planned to develop an image-based system which, through permanent monitoring and intelligent decision making logic, will enable the automatic selection of the optimal usage of pesticides for potato plants. The proposed solution should be a software for an autonomous system (multi-copter), which is based on sensor data of a multi-spectral camera. Data processing will be realized on a ground unit using GPU (CUDA) accelerated algorithms for Image data processing, spectral analysis, feature extraction and decision logic. These algorithms will derive a reliable and rapid decision on the infestation of a potato plant with phytophthora infestans. Based on the result an optimized suggestion of the fungicide usage will be proposed to the farmer. Hence, it will realize a saving of 30-45% of the fungicides and associated costs  for the first time.

Fotogallery

Closeup sample field (Photo: Kai Winkel, ARGUS monitoring)
Closeup sample field (Photo: Kai Winkel, ARGUS monitoring)
Example image of the sample field taken by the drone, color image generated by fusing the RGB like spectral images. (Processed by DFKI GmbH)
Example image of the sample field taken by the drone, color image generated by fusing the RGB like spectral images. (Processed by DFKI GmbH)
Image of the data akquisition on the sample filed. (Photo: Kai Winkel, ARGUS monitoring)
Image of the data akquisition on the sample filed. (Photo: Kai Winkel, ARGUS monitoring)
Back to the list of projects
© DFKI GmbH
last updated 12.04.2018
to top