TransTerrA

Semi-autonomous cooperative exploration of planetary surfaces including the installation of a logistic chain as well as consideration of the terrestrial applicability of individual aspects

Mobile systems involved in the space scenario: SherpaTT, Coyote III (orange, in crater), and BaseCamp with Payload-Item (right)  (Photo: Florian Cordes, DFKI GmbH)
Mobile systems involved in the space scenario: SherpaTT, Coyote III (orange, in crater), and BaseCamp with Payload-Item (right) (Photo: Florian Cordes, DFKI GmbH)

Robotic systems that are able to work autonomously on alien planets or moons are equally well suited for applications on earth. Examples are the management of maritime resources, search and rescue, or medical rehabilitation. The goal of the project TransTerrA is to further develop the space technologies available at DFKI within a complex scenario and to make them available for terrestrial applications.

Duration: 01.05.2013 till 31.12.2017
Donee: DFKI GmbH
Sponsor: Federal Ministry of Economics and Technology
German Aerospace Center e.V.
Grant number: This project is funded by the German Space Agency (DLR Agentur) with federal funds of the Federal Ministry of Economics and Technology in accordance with the parliamentary resolution of the German Parliament, grant no. 50 RA 1301
Application Field: Space Robotics
Underwater Robotics
SAR- & Security Robotics
Assistance- and Rehabilitation Systems
Related Projects: TransGo
Technology Readiness Levels of Intelligent Robotic Systems in Space and their Transferability to Other Domains (07.2012- 02.2013)
RIMRES
Reconfigurable Integrated Multi Robot Exploration System (09.2009- 12.2012)
iMoby
Intelligent Mobility (04.2009- 06.2012)
IMMI
Intelligent Man-Machine Interface - Adaptive Brain-reading for assistive robotics (05.2010- 04.2015)
LIMES
Learning Intelligent Motions for Kinematically Complex Robots for Exploration in Space (05.2012- 04.2016)
Capio
Dual-arm exoskeleton (01.2011- 12.2013)
CUSLAM
Localization and mapping in confined underwater environments (09.2009- 07.2012)
Related Robots: SherpaUW
ASGUARD IV
Advanced Security Guard V4
Exoskeleton active (Capio)
Capio Upper Body Exoskeleton for Teleoperation
Coyote III
SherpaTT
Sherpa
Expandable Rover for Planetary Applications
ASGUARD III
Advanced Security Guard V3
Exoskeleton Passive (CAPIO)
Upper body Human-Machine-Interface (HMI) for tele-operation
Related Software: MARS
Machina Arte Robotum Simulans
NDLCom
Node Level Data Link Communication
Phobos
An add-on for Blender allowing editing and exporting of robots for the MARS simulation
pySPACE
Signal Processing and Classification Environment written in Python

Project details

Schematic illustration of the space scenario including the installation of a logistic chain (Source: Jan Albiez, DFKI GmbH)
Detail of an envisioned exploration mission at the lunar south pole: The exploration rover SherpaTT drives up the central peak for deployment of a BaseCamp as communication relay (b1). On its way to the rim of the Amundsen crater (b7) several soil samples are taken. These are collected at rendevouz-points from the Shuttle Coyote III and transported to the return stage at the landing site. (Source: Florian Cordes, DFKI GmbH)

Scenario: a team of robots explores the lunar surface

Complex robotic missions attain an increasing importance for the exploration of our solar system.  Ever more sophisticated experiments, the retrieval of samples or even the preparation of manned missions to alien bodies such as the moon or Mars cannot be achieved by individual systems any more, but need to be distributed to several missions.  The scenario in TransTerrA demonstrates the (semi-) autonomous exploration of planetary surfaces using a cooperating robot team consisting of a rover and a shuttle. The shuttle‘s task is to supply the rover which requires the installation of a logistic chain, i.e. the setup of reliable channels of supply over several waypoints. Human operators on earth will be able to control the mission using novel human-machine interfaces.

In order to build up the logistic chain so-called base-camps will be used in order to bridge large distances between a lander and the rover. Depending on its task, which could be a depot for energy or soil samples, or a relay station for communication, a base-camp can be extended by functional modules. Base-camps, replaceable functional modules, rover and shuttle possess a compatible docking interface so that the shuttle as well as the rover can modify the base-camps using modules delivered to them. Additionally, the modules can be exchanged between shuttle and rover.

The rover is based on the hybrid wheel-step robot Sherpa, the shuttle is based on Asguard, a result of project iMoby. As part of the research agenda the technology readiness of Sherpa will be increased, and along with it the space readiness of individual subcomponents. The mission control center, being the interface between human operator and exploration robot, consists on one hand of an upper body exoskeleton as it was developed in project Capio for controlling the systems, and on the other hand of modern visualization tools such as 3-dimensional multi-projection screens and head-mounted displays (HMDs). The experiences from project IMMI will be used to optimize the control center technology considering psycho-physiological data such as EEG and eye tracking (see video on operator support by embedded Brain Reading as developed in IMMI here).

Technology transfer to terrestrial applications

The robotic technologies of all involved systems developed within the space exploration scenario, including their cooperation, the installation of a logistic chain, and a suitable human-machine interface, will be transferred into the terrestrial application domains search and rescue, management of maritime resources, and rehabilitation. This demonstrates the exchangeability and mutual applicability of technologies from space and terrestrial robotics. In each of the application domains an individual scenario will be defined, demonstrating the transferability of technologies and systems.

Videos

Coyote III Demonstriert ein robotisches Such- und Rettungsszenario

Coyote III – Ein Mikro Rover der ursprünglich für die Weltraumexploration entwickelt wurde, hat seine Vielseitigkeit bereits in diversen Szenarien gezeigt. Der Rover besticht hierbei durch hohe Mobilität und Flexibilität, um alle Situationen zu meistern.

Neben dem Weltraum kann Coyote III auch für Such- und Rettungsaufgaben (SAR) auf der Erde eingesetzt werden. Über die Kamera und den Laserscanner erhält der Fahrer einen klaren Überblick über die Umgebung und kann den Rover sicher bedienen. Durch die modulare Systemarchitektur können verschiedene Sensor- und Nutzlastmodule an den Rover angeschlossen werden. Dies ermöglicht es die Rettungsteams in unterschiedlichen Situationen zu unterstützen und die Sicherheit ihrer Arbeit zu erhöhen. Hierbei kann Coyote III auch völlig autonom eingesetzt werden und ausgedehnte Gebiete erkunden.

Zusätzlich zur Kartierung und visuellen Lageerfassung ist die Detektion und Kartierung von Gefahrstoffen ein wichtiger Bestandteil für den SAR Einsatzbereich. Zur Demonstration dieser Eigenschaften wurde ein beispielhaftes Umweltsensormodul konzipiert und in ein modulares Nutzlastmodul integriert. Das Sensormodul ist mit verschiedenen Gassensoren sowie Temperatur- und Luftfeuchtigkeitssensoren ausgerüstet.

Eine derartige Sensorausrüstung kann zum Beispiel dazu eingesetzt werden Gaslecks zu identifizieren oder für das Einsatzpersonal gefährliche Kohlenmonoxid- oder Faulgasbelastungen zu detektieren. Während seiner Fahrt erzeugt der Rover automatisch eine Umgebungskarte und trägt die detektierten Umweltparameter, wie zum Beispiel eine Gaskonzentration, hierin ein.

Coyote III: Integration der Subsysteme

Das Video zeigt den Aufbau von Coyote III mit den dedizierten Subsystemen und präsentiert ihre Hauptmerkmale. Coyote III ist ein Mikro-Rover, der eine hohe Mobilität in unstrukturiertem Gelände aufweist. Dank der roboterinternen Stromversorgung, den On-Board Sensoren sowie einem On-Board Computer ist es ihm möglich, Explorationsaufgaben autonom durchzuführen. Zudem erlaubt das Kommunikationssystem dem Rover, mit anderen Systemen zu kooperieren. Coyote III wird mit zwei standardisierten elektromechanischen Schnittstellen ausgerüstet, welche das Andocken zusätzlicher Nutzlastelemente, wie z.B. standardisierter Nutzlastcontainer oder eines Manipulators, ermöglichen. Durch die leichte und robuste Bauweise kann Coyote III mit mehreren Kilogramm Nutzlast beladen werden. Aufgrund der modular gestalteten Bauweise ist der Rover weiterhin in der Lage, seine Struktur an nutzlastspezifische Anforderungen anzupassen.

TransTerrA: Coyote III Kraterversuch

Coyote III meistert eine 45° steile Kraterwand im künstlichen Mondkrater.

TransTerrA: Der Roboter Coyote III im Schnee

Beobachte Coyote III wie er sich in tiefem Schnee im unwegsamen Gelände bewegt

Capio Exoskelett: Ansteuerung über Biosignale

Demonstration der Ansteuerung des Capio Exoskeletts über Biosignale: Das Exoskelett-System erfasst durch die Verarbeitung von Biosignalen die Bewegungsintention des Operators und führt eine zielgerichtete aktive Bewegung des rechten oder linken Arms aus. Hierbei wird mittels Eye-Tracker der Interaktionswunsch erfasst (Fixierung einer virtuellen Flasche), mittels elektroenzephalographischer Signale (EEG) die Bewegungsintention des linken bzw. rechten Arms ermittelt und durch elektromyographische Signale (EMG) die Bewegungsintention zusätzlich verifiziert.

SherpaTT in Außentests

SherpaTT zeigt seine Fähigkeit mittels aktiven Fahrwerk auch große Unebenheiten ausgleichen zu können.

Intrinsisches interaktives verstärkendes Lernen: Nutzung von Fehler-korrelierten Potentialen

Der Roboter lernt dank menschlichem Negativ-Feedback aus eigenem Fehlverhalten

Picture Gallery

Mobile Systems involved in the space scenario: Exploration rover SherpaTT, Coyote III (orange, in crater), and BaseCamp with Payload-Item (foreground). (Photo: Florian Cordes, DFKI GmbH)
Mobile Systems involved in the space scenario: Exploration rover SherpaTT, Coyote III (orange, in crater), and BaseCamp with Payload-Item (foreground). (Photo: Florian Cordes, DFKI GmbH)
Exoskeleton as input device in a virtual mission control room. A multi-projection surface serves as control room for the multi-robot mission. (Source: n/n)
Exoskeleton as input device in a virtual mission control room. A multi-projection surface serves as control room for the multi-robot mission. (Source: Martin Mallwitz, DFKI GmbH)
CAD model of the rover planned for the maritime resources scenario: SherpaUW. The suspension units of SherpaTT are mounted on a different central body for the underwater scenario. (Source: Sven Kroffke, DFKI GmbH)
CAD model of the rover planned for the maritime resources scenario: SherpaUW. The suspension units of SherpaTT are mounted on a different central body for the underwater scenario. (Source: Sven Kroffke, DFKI GmbH)
Path-planning accouting for an adaptive footprint  (Source: Stefan Haase, DFKI GmbH)
Path-planning accouting for an adaptive footprint (Source: Stefan Haase, DFKI GmbH)
Motion-primitive generation for path-planning (Source: Stefan Haase, DFKI GmbH)
Motion-primitive generation for path-planning (Source: Stefan Haase, DFKI GmbH)
The exploration rover SherpaTT in DFKI’s artificial crater environment. (Photo: Florian Cordes, DFKI GmbH)
The exploration rover SherpaTT in DFKI’s artificial crater environment. (Photo: Florian Cordes, DFKI GmbH)
The shuttle rover Coyote III in DFKI’s artificial crater environment (Photo: Annemarie Hirth, DFKI GmbH)
The shuttle rover Coyote III in DFKI’s artificial crater environment (Photo: Annemarie Hirth, DFKI GmbH)
Coyote III equipped with a modular manipulator device (Photo: Roland Sonsalla, DFKI GmbH)
Coyote III equipped with a modular manipulator device (Photo: Roland Sonsalla, DFKI GmbH)
Coyote III performing snow run, January 2016 (Photo: Roland Sonsalla, DFKI GmbH)
Coyote III performing snow run, January 2016 (Photo: Roland Sonsalla, DFKI GmbH)
Indoor and outdoor multi layer surface map generated by Coyote III (Photo: Roland Sonsalla, DFKI GmbH)
Indoor and outdoor multi layer surface map generated by Coyote III (Photo: Roland Sonsalla, DFKI GmbH)
DFKI-X Joint: EM of motor and gear unit coupled to a mechanical load for space pre-qualification (Photo: Roland Sonsalla, DFKI GmbH)
DFKI-X Joint: EM of motor and gear unit coupled to a mechanical load for space pre-qualification (Photo: Roland Sonsalla, DFKI GmbH)
DFKI-X Joint: Breadboard of the motor control electronics for space pre-qualification (Photo: Roland Sonsalla, DFKI GmbH)
DFKI-X Joint: Breadboard of the motor control electronics for space pre-qualification (Photo: Roland Sonsalla, DFKI GmbH)
SherpaTT during field trials in the desert of Utah. The system is equipped with different Payload-Items; a BaseCamp is mounted under the robot. (Photo: Florian Cordes, DFKI GmbH)
SherpaTT during field trials in the desert of Utah. The system is equipped with different Payload-Items; a BaseCamp is mounted under the robot. (Photo: Florian Cordes, DFKI GmbH)
Deployed BaseCamp with attached Payload-Items. (Photo: Florian Cordes, DFKI GmbH)
Deployed BaseCamp with attached Payload-Items. (Photo: Florian Cordes, DFKI GmbH)
Coyote III with the modular manipulator arm SIMA during field trials in the desert of Utah. (Photo: Florian Cordes, DFKI GmbH)
Coyote III with the modular manipulator arm SIMA during field trials in the desert of Utah. (Photo: Florian Cordes, DFKI GmbH)
SherpaTT transferring a Payload-Item to Coyote III. The SIMA manipulator arm is folded backwards to give room for the operation. (Photo: Florian Cordes, DFKI GmbH)
SherpaTT transferring a Payload-Item to Coyote III. The SIMA manipulator arm is folded backwards to give room for the operation. (Photo: Florian Cordes, DFKI GmbH)
The electro-mechanical Interface (EMI, top centre) connects and disconnects different modules – Payload-Item (top left), BaseCamp (bottom left), SherpaTT (bottom centre), SIMA arm (bottom right), and Coyote III (top right) – of a multi-robot system. (Source: Florian Cordes, DFKI GmbH)
The electro-mechanical Interface (EMI, top centre) connects and disconnects different modules – Payload-Item (top left), BaseCamp (bottom left), SherpaTT (bottom centre), SIMA arm (bottom right), and Coyote III (top right) – of a multi-robot system. (Source: Florian Cordes, DFKI GmbH)
 

Publications

2019


2018


2017


2016


2015


2014


Back to the list of projects
© DFKI GmbH
last updated 16.07.2019
to top