Hybr‐iT

Hybrid and intelligent human-robot collaboration – Hybrid teams in versatile cyber-physical production environments

The joint research project „Hybrid and intelligent human-robot collaboration: hybrid teams in versatile cyber-physical production environments – Hybr-iT” investigates and tests in an industrial context the components that are essential for the planning and optimization of hybrid teams, for their integration in existing IT and production infrastructures as well as for their control in a production plant. Hybrid teams are composed in this project of several humans (m>=2) and robots (n>=2) as well as software-based assistant systems. A key element is that all the developments of the project need to be seamless and smoothly integrated in existing industrial infrastructures. This requires that all developments are modular and hardware-independent.

Duration: 01.11.2016 till 31.10.2019
Donee: DFKI GmbH
Sponsor: Federal Ministry of Education and Research
Grant number: Funded by BMBF (German Federal Ministry of Education and Research) Grant Nr: 01IS16026A
Website: http://hybr-it-projekt.de/
Partner: Airbus Operations GmbH, KUKA Roboter GmbH, VOLKSWAGEN AKTIENGESELLSCHAFT, Broetje-Automation GmbH, EngRoTec GmbH & Co. KG, The Captury GmbH, Federal Institute for Occupational Safety and Health (BAuA)
Application Field: Logistics, Production and Consumer
Related Projects: HySociaTea
Hybrid Social Teams for Long-Term Collaboration in Cyber-Physical Environments (09.2014- 08.2016)
iMRK
Intelligent Human-Robot Collaboration (03.2015- 06.2016)
BesMan
Behaviors for Mobile Manipulation (05.2012- 07.2016)
D-Rock
Models, methods and tools for the model based software development of robots (06.2015- 05.2018)
iLAADR
Internal Logistics with Automated Autonomous Delivery and Replenishment (01.2016- 12.2016)
Related Robots: Mobipick
Related Software: Rock
Robot Construction Kit

Project details

Figure 1. Schematic diagram of the architecture in Hybr-iT (Photo: Renato Orsini, DFKI GmbH)
The goal of the project is the development and testing of hybrid teams in an industrial environment. Those teams are composed of humans, robots and software-based assistant systems as well as intelligent virtual environments and are, from an IT perspective, highly-distributed systems which include very different IT and cyber-physical subsystems: robot controllers, safety, logistics and tracking systems, databases, simulation and visualization environments, etc. In order to achieve the ambitioned collaborative application, those subsystems need to be interconnected with highest performance.

One essential component and scientific challenge for the deployment of hybrid teams is a comprehensive resource-oriented architecture (ROA) for the interconnection of heterogeneous cyber-physical systems and IT environments. This architecture allows a dynamic connection between all required subsystems (IT environments, cyber-physical systems and multimodal interaction and control hardware) as well as their individual further development with the help of widely-standardized interfaces and well-defined data models. Besides, for the resource-oriented architecture (Figure 1), a safe and real-time communication layer is indispensable.

Furthermore, a software architecture for the robot itself is required which seamlessly interacts with the ROA and establishes the information for the control of robots in hybrid teams. This architecture abstracts from the used hardware and allows a robot-independent deployment of the developed solutions. Through the interplay of ROA and robot architecture, IT environments and robots can be interconnected regardless of manufacturer.

In order to keep IT and cyber-physical subsystems running synchronous and consistently, a real-time, adaptive, and semantic data and environment model is also required, which receives all the required information from the subsystems and can update that of the ROA and of the robot architecture. A further prerequisite for a close cooperation between workers and robots is a robust, precise, and extensive real-time worker recognition which works under very different production conditions and also with changing workforce. In order to minimize setting-up times and avoid disturbing markers, marker-less tracking procedures need to be further developed so that they can also work precisely under industrial conditions.

To achieve a direct human-robot interaction, i.e. to communicate between humans, robots and assistant systems, multimodal dialogue systems are required, which use both already-existing input and output channels (e.g. switches, monitors, acoustic signals, etc.) and also new possibilities such as speech interaction, gesture recognition and haptic feedback. Those dialogue systems will access both the robot architecture and the ROA.

Together with the industrial partners, DFKI will implement two evaluation scenarios for the demonstration of hybrid teams in the automotive and aerospace assembly. Several DFKI research groups work together in the project Hybr-iT. The Robotics Innovation Center has its focus on the development of safe and intuitive human-robot collaboration and the therefor required robot skills.

Videos

Hybr-iT: Wissensbasierte Objektmanipulation - Erste Vertikale Integration von Softwarekomponenten

Das Video zeigt die erste vertikale Integration von Softwarekomponenten zur wissensbasierten Objektmanipulation im Projekt Hybr-iT. Diese beinhalten den Handlungsplaner CHIMP, eine semantisch angereicherte Umgebungsrepräsentation, die Event-basierte Ablaufsteuerung- und Überwachung Xec, sowie die Echtzeitsteuerung des Roboters. Das Zusammenspiel der Komponenten wird anhand einer kontextbasierten Manipulationsaufgabe auf einem zweiarmigen Industrie-Robotersystem demonstriert: Das Aufnehmen und Verschrauben eines Getriebelagers. Diese Aufgabe wird einmal mit Unterstützung durch den Menschen und einmal autonom durch den Roboter ausgeführt. Das Verhalten des Roboters wird dabei anhand des Aufgabenkontextes zur Laufzeit angepasst.

 

Publications

2018


2017


Back to the list of projects
© DFKI GmbH
last updated 16.07.2019
to top